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Abstract: The enhanced definition of Mechatronics involves the four underlying characteristics of integrated, 

unified, unique, and systematic approaches. In this realm, Mechatronics is not limited to electro-mechanical 

systems, in the multi-physics sense, but involves other physical domains such as fluid and thermal. This paper 

summarizes the mechatronic approach to modeling. Linear graphs facilitate the development of state-space 

models of mechatronic systems, through this approach. The use of linear graphs in mechatronic modeling is 

outlined and an illustrative example of sound system modeling is given. Both time-domain and frequen-

cy-domain approaches are presented for the use of linear graphs. A mechatronic model of a multi-physics sys-

tem may be simplified by converting all the physical domains into an equivalent single-domain system that is 

entirely in the output domain of the system. This approach of converting (transforming) physical domains is 

presented. An illustrative example of a pressure-controlled hydraulic actuator system that operates a mechanical 

load is given. 

Keywords: Mechatronic Modeling, Multi-physics Systems, Integrated, Unified, Unique and Systematic Ap-
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1  Mechatronic Modeling 

The field of Mechatronics concerns multi-physics 

systems, which typically have more than one physical 

domain (for example, domains among mechanical, 

electrical, fluid and thermal). The “enhanced” mecha-

tronic approach constitutes the four characteristics[1]: 

Integrated 

Unified 

Unique 

Systematic. 

Here, integrated means all physical domains in the 

system are considered together (i.e., concurrently or 

simultaneously). This is needed because, typically, 

there will be dynamic interactions among the physical 

domains.  

Unified means, all physical domains are treated 

using similar (i.e., analogous) methodologies. No 

matter what the physical domain is, it will have two 

types of variables: through-variables and 

across-variables. Through-variables propagate un-

changed through an element. Examples of 

through-variables are force, current, fluid flow rate, 

and heat transfer rate, which are all analogous. 

Across-variables are defined across a physical element, 

at one end (action end) with respect to the other end 

(reference end). Examples of across-variables are ve-

locity, voltage, pressure, and temperature, which are all 

analogous. There will be two types of sources (inputs) 

in a system, as, through-type (T-type) sources whose 

independent variable is a through-variable, and 

across-type (A-type) sources, whose independent va-
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riable is an across-variable. Examples of T-sources are 

force source, current source, fluid flow source, and 

heat transfer source. Examples of A-sources are ve-

locity source, voltage source, pressure source, and 

temperature source. In view of these analogies, se-

ries-connected physical modules behave similarly 

across physical domains, and also parallel-connected 

physical modules behave similarly across physical 

domains. Approaches that exploit these analogies are 

indeed unified approaches. 

Unique implies that at the end of the process 

(typically, modeling or design of a system), only a 

single result (a model or a design) is generated. Since 

an engineering system may have more than one model 

and more than one design, in order to yield a unique 

end result, the employed procedure needs to be “op-

timal” in some sense.  

Systematic means, the underlying procedures 

need to be well-articulated and follow a clear set of 

steps. This means, there will not be any confusion as to 

what procedures (or program sequences) need to be 

followed in order to yield the end result. This also 

enables the software engineers to develop proper 

computer programs to carry out the underlying pro-

cedures. 

The features of integrated, unified, unique, and 

systematic are necessarily possessed by proper “me-

chatronic” approaches of modeling or design.   

2  Linear Graph Models 

A model is a representation of the actual system. 

There are many types of models; in particular, 

1. Physical Models (Prototypes) 

2. Analytical Models 

3. Computer (Numerical) Models (data tables, cur- 

ves, programs, files, etc.) 

4. Experimental Models (which use input/output 

experimental data from a real system, for “fitting” to a 

model; i.e., “model identification”). 

The focus of the present paper is analytical mod-

els. They are applicable in various practical situa-

tions[2-12]. 

Linear Graphs (LGs) provide an integrated and 

unified (multi-physics) tool to graphically represent a 

system model, which facilitate the development of a 

state-space model of an engineering system. An LG 

enables the visualization of the system structure, prior 

to the model formulation[1, 13-15]. It uses interconnected 

line segments (branches) to represent elements. It as-

sists us in identifying similarities (in domain, structure, 

behavior, etc.) in the system. As the underlying me-

thodology is “systematic” and graphical, LGs provide a 

basis for the development of computer-based modeling 

tools and software (e.g., MATLAB tools). Initially, the 

LG approach is applicable for lumped-parameter sys-

tems; yet it may be extended to distributed-parameter 

systems, through innovative extensions, which is 

beyond the scope of the present paper[14]. In the LG 

terminology, “linear” implies the use of “lines” to 

represent physical elements. Of course, the LG ap-

proach can be used to model nonlinear systems as 

well, which have nonlinear constitutive equations. 

Modeling considerations are important in the present 

context [1-12].  

The main steps in formulating a lumped- para-

meter analytical model of a dynamic system are as 

follows: 

1. Identify the system of interest (purpose, 

boundary), 

2. Identify/specify the variables of interest (ex-

citations/inputs, responses/outputs, etc.) 

3. Approximate various segments (processes, 

phenomena) by ideal “lumped” elements, suitably 

interconnected. Draw a structural diagram for the 

system (e.g., linear graph), showing the structure 

(element/component interconnection) of the system, 

4. Using the structural diagram, 

(a) Write constitutive equations (physical laws) 

for elements (other than the “input elements” or 

“sources”), 

(b) Write continuity (or conservation) equations 

for through-variables (those variable that do not change 

through an element) at junctions (nodes); E.g., equili-

brium of forces at joints; current balance at nodes, 

(c) Write compatibility (or loop) equations for 

across-variables (potential variables, path variables), 
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which are measured across an element, in closed paths 

(loops); E.g., for velocities—geometric connectivity; 

voltages—potential balance. Note: Compatibility is 

automatically satisfied in some systems, particularly 

because of the nature of the choice of across-variables 

for elements, for example, the reference end of an in-

ertia (mass) element is the ground (inertial reference), 

which corresponds to zero velocity, similarly, the ref-

erence end of a source is the ground. 

(d) Eliminate auxiliary (unwanted) variables, and 

5. Express initial conditions using system va-

riables (There are no boundary conditions for lumped 

models. This is because “time” is the only independent 

variable in the model). 

In a sound system, the speaker unit will typically 

have a woofer, which is intended for the low-

er-frequency sound, and a tweeter, which is intended 

for the high-frequency sound. Consider the two elec-

trical circuits, representing sound systems, shown in 

Fig.1 and Fig.2. In each circuit, the sound signal 

reaches the speaker, which is represented as an elec-

trical resistor (with resistance R1 or R2), which may 

represent a woofer or a tweeter. 

First, the expression of the electrical impedance 

(A-transfer function) of each circuit branch in Fig.1 

and Fig.2 is given, in terms of the branch parameter (L1, 

L2, L, C, C1, C2, R1, R2) and the frequency ω of the 

sound signal (the input). Based on this information, it is 

determined which circuit corresponds to a woofer and 

which circuit corresponds to a tweeter. 

First consider Fig.1. The electrical impedances of 

the circuit branches are: 1 2 1
1

;   ;   ;  and  L j L j R
Cj

 


. 

It is seen that at low frequencies, the sound signal 

reaches the speaker, through the low-impedance path. 

At high frequencies, the sound signal is mostly blocked, 

since the sound source will encounter an overall high 

impedance. It follows that this circuit corresponds to a 

woofer. 

Next consider Fig.2. The electrical impedances of 

the circuit branches are: 2
1 2

1 1
;   ;   ;  and  Lj R

C j C j


 
. 

It is seen that at low frequencies, the sound signal is 

mostly blocked, since the sound source will encounter 

an overall high impedance. At high frequencies, the 

sound signal reaches the speaker, through the 

low-impedance path. It follows that this circuit cor-

responds to a tweeter. 

Now consider the electrical circuit shown in Fig.3. 

It also represents the speaker circuit of a sound system, 

but in more detail. The speaker is represented by the 

resistor of resistance sR . The effects of the inertia and 

the mechanical damping of the speaker are represented 

by an equivalent electrical capacitance mC and an 

equivalent electrical resistance bR , respectively. The 

electrical inductances and s cL L are the remaining cir-

cuit parameters.The circuit input is the sound signal of 

voltage ( )iv t  and the circuit output is the voltageva-

cross the speaker (of resistance sR ). Also, the current 

through the inductance is s sL i and the current through 

the inductance is c LL i . The voltage across the capa-

citor is m mC v (which corresponds to the velocity of 

the speaker). 

First, a complete an oriented linear graph for the 

circuit is drawn. Using the linear graph, systematically, 

a complete state-space model is developed for the 

circuit. Using the state-space model, the input-output 

(I-O) differential equation for the circuit is derived. 

The oriented linear graph of the circuit is shown 

in Fig.4. The particular choice of the primary loops 

(three), and all the nodes (four) are indicated on the 

LG.The system has three independent energy storage 

elements ( ,   ,   s c mL L C ). Hence, the system is 3rd order, 

with three state variables, which are chosen according 

to the mechatronic approach, as state vector x  
[ ]Ts L mi i v . Also, input vector  ( )iv tu ; and out-

put vector  vy . 
 

Constitutive Equations (Physical Equations) 
 

State-space Shell: 

:      

:      

:      

s
s s s

L
c L L

m
m m m

di
L L v

dt
di

L L v
dt
dv

C C i
dt






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Remaining Constitutive Equations: 

:    

:    
s s

b R b R

R v R i

R v R i




 

 

Independent Node Equations 

Node 1: 0i si i   {not useful because ii  is 

the dependent variable of the source} 

Node 2: 0si i   

Node 3: 0L R mi i i i     

 

Loop Equations 

Loop 1:     ( ) 0

Loop 2:     - 0

Loop 3:     0

L s i

m L

m R

v v v v t

v v

v v

    
 

  
 

 

Eliminate Auxiliary Variables: 

( ) ( )

( )
s L i s m i

s s m i

v v v v t R i v v t

R i v v t

       
   

 

L mv v  

1R
m L R s L s L m

b b

v
i i i i i i i i v

R R
          

 

State-space Model: 

 
( )s

s s s m i
di

L R i v v t
dt

   
 

 (1) 

 

L
c m

di
L v

dt
  (2) 

 

1m
m s L m

b

dv
C i i v

dt R
  

 

(3) 

Output Equation: s s sv R i R i   

The overall state-space model is given by, 

 
 

x Ax Bu

y Cx Du


 

Model Matrices: 

1
0

1
0 0

1 1 1

s

s s

c

m m b m

R

L L

L

C C R C

 
  
 
 
 
 
 

  
  

A = ; 

1

0

0

sL
 
 
 
 
 
 
  

B = ; 

 0 0sRC = ;   0D =  

Now, to obtain the I-O model, we need to get a 

single differential equation in terms of the input (vi(t)) 

and the output (Rs is). Substitute (2) into (1) and (3), to 

eliminate vm:   

 
( )s L

s s s c i
di di

L R i L v t
dt dt

   
 

(4) 

 

2

2
cL L

m c s L
b

Ld i di
C L i i

R dtdt
  

 

(5) 

Differentiate (5): 
3 2

3 2
s cL L L

m c
b

di Ld i di d i
C L

dt dt Rdt dt
    

Substitute (4) in this, to eliminate iL: 

2

2

1
( )

1
( )

1
( )

s s s
m c s i

c c c

s s s s
s i

c c c

c s s s
s i

b c c c

L di Rd
C L i v t

L dt L Ldt

di L di R
i v t

dt L dt L L

L L di Rd
i v t

R dt L dt L L

 
    
 

 
     
 
 
   
 

 

Or,  
3 2 2

3 2 2

2

2

( )

1
( )

( )1

s s i
m s m s m

s s s s
s i

c c c

s s s s i

b b b

d i d i d v t
C L C R C

dt dt dt
di L di R

i v t
dt L dt L L

L d i R di dv t

R R dt R dtdt

   

   

 

 

Multiply throughout by Rs:  
3 2 2

3 2 2

2

2

( )

( )

( )

s s s s i
m s m s m s

s s s s s s s
s s i

c c c

s s s s s s s i

b b b

d R i d R i d v t
C L C R C R

dt dt dt
dR i L dR i R R

R i v t
dt L dt L L

L d R i R dR i R dv t

R R dt R dtdt

   

   

 

 

Substitute v: 
23 2

3 2 2

2

2

( )

( )

( )

i
m s m s m s

s s s
i

c c c

s s s i

b b b

d v td v d v
C L C R C R

dt dt dt
L R Rdv dv

v v t
dt L dt L L

L R R dv td v dv

R R dt R dtdt

   

   

 

 

Group the like terms, to give the I-O differential 
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equation: 
3 2

3 2

2

2

( ) (1 )

( ) ( )
( )

s s s s
m s m s

b c b c

i s i s
m s i

b c

L L R Rd v d v dv
C L C R v

R L R dt Ldt dt

d v t R dv t R
C R v t

R dt Ldt

      

 

 

Note: We should check now whether the units are 

consistent in all the terms in this equation (as a further 

check on the accuracy of the results). For this, it may be 

used that, in the Laplace domain, the terms 
1

, ,Ls R
Cs

 

stitutive equations of L, C, and R). 

3  Transformation of Physical Domains 

In the mechatronic modeling of a multi-physics 

system, once a model is obtained, further analysis can 

be facilitated by transforming all the physical domains 

in the model into the output domain. This will yield a 

single-domain equivalent model. To develop the asso-

ciated methodology, it is adequate just consider a sys-

tem that consists of only two physical domains. If the 

system has more than two physical domains, the do-

main transformation can be carried out by sequentially 

treating the output domain and just one other physical 

domain in the system. 

To develop the domain transformation metho-

dology, two types of coupling between two energy 

domains are available. They are transformer coupling 

and gyrator coupling. They are based on whether an 

across-variable or a through-variable in the input do-

main is relatedto an across-variable in the output do-

main. The underlying relations are presented next[16]. 

Transformer-coupled Systems 

Suppose that the two domains of the system are 

coupled through a “generalized transformer.” In the 

energy transfer port of a generalized transformer, the 

across-variable of the output domain is related to the 

across-variable of the input domain. First, the Theve-

nin theorem is applied to the input-domain subsystem, 

to determine the equivalent A-source ( )ocP s  and the 

equivalent generalized impedance eZ  in series, in the 

Thevenin equivalent LG. This result is shown in 

Fig.5(a). This is in the form of a transfer-function li-

near graph (TFLG). 

Note: If the input subsystem is in the fluid domain, 

the equivalent Thevenin source ( )ocP s  is a pressure 

source, and eZ  is a fluid impedance (Pressure/Flow 

Rate). If the output domain is mechanical, f1 is a force, 

v1 is a velocity and Z-subscript-e is a mobilit. In any 

other domain, these quantities will take the corres-

ponding meanings.   

Now, it is needed to determine the equivalent 

A-source and the equivalent generalized impedance (in 

series) in the converted domain. The necessary steps of 

formulation for determining these are as follows: 

1. Constitutive equation of impedance 

2. Constitutive equations of transformer 

3. Loop equation 

4. Node equation  

5. Carry out substitutions as needed. 

This formulation is summarized in Table 1. The 

equivalent TFLG of the converted subsystem is shown 

in Fig.5(b). 
 

 
 

Fig.1  Electrical Circuit Representing a Speaker Unit of a Sound System 

all have the same units (Ohms, according to the con-
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Fig.2  Another Electrical Circuit Representing a Speaker Unit of a Sound System 

 

 
 

Fig.3  An Electrical Circuit Representing the Speaker Unit of a Sound System 

 

 
 

Fig.4  The Oriented Linear Graph of the Circuit 

 

Gyrator-coupled Systems 

Suppose that the two domains of the system are 

coupled through a “generalized gyrator.” In its energy 

transfer port, the across-variable of the output domain 

is related to the through-variable of the input domain. 

As before, the Thevenin theorem is applied to the  

input-domain subsystem, to determine the equivalent 

A-source ( )ocP s  and the equivalent generalized im-

pedance eZ  in series, in the Thevenin equivalent LG. 

This result is shown in Fig.6(a). This is in the form of a 

transfer-function linear graph (TFLG). 

Finally, it is required to determine the equivalent 

A-source and the equivalent generalized impedance (in 

series) in the converted domain. The necessary steps of 

formulation for determining these are as follows: 

1. Constitutive equation of impedance 

2. Constitutive equations of transformer 

3. Loop equation 

4. Node equation  

5. Carry out substitutions as needed. 

This formulation is summarized in Table 2. The 

equivalent TFLG of the converted subsystem is shown 

in Fig.6(b). 
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Fig.5  Transformer-coupled System. (a) Thevenin equiv-

alent LG of the subsystem to be converted; (b) Equivalent 

transfer-function LG of the subsystem in the new domain 

 

As an illustrative example for the mechatronic 

modeling of a multi-physics system and converting it 

into a single domain (the output domain), consider the 

system consisting of both mechanical components and 

fluid components, as shown in Fig.7. In this system, a 

pump of pressure  sP t , which is a pressure source 

(the system input), pumps water through a uniform 

horizontal thin pipe, into a horizontal cylinder of area 

of cross-section A and a leak-proof piston, which 

serve as the hydraulic actuator that drives a mechani-

cal load. The combined mass of the actuator piston 

and the mechanical load is m , the resisting stiffness of 

the mechanical load is k , and the combined viscous 

damping constant of the actuator piston and the me-

chanical load is b . The fluid inertance in the pipe is 

represented by I and the fluid resistance in the pipe is 

represented by R. The pressure ripples in the water  

 

 
Fig.6  Gyrator-coupled System. (a) Thevenin equivalent 

LG of the subsystem to be converted; (b) Equivalent 

transfer-function LG of the subsystem in the new domain 
 

flow of the pipe are suppressed before the flow enters 

the actuator, by means of an energy absorber consist-

ing of an open tank of fluid capacitance Cf (assumed 

to be constant). The water in this buffer tank goes 

through a valve of fluid resistance vR before entering 

the actuator cylinder. 

Note: Even though the fluid resistance vR  of the 

valve is adjustable (by operating the valve), it is as-

sumed to be a constant (i.e., the valve opening is kept 

the same throughout the operation).  

The velocity mv of the load m (also, of the ac-

tuator piston) is the system output.  

First, a complete linear graph (LG) is drawn for 

the system. Using this linear graph, a complete state 

space model is developed for the system. From the 

state-space model, the input-output differential equa-

tion is determined (input =  sP t , output = mv ). From  
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Table 1  Domain Conversion of a Transformer-coupled System 

Formulation Step Result 

Equivalent-impedance Constitutive Equation e e eP Z Q  

Transformer Constitutive Equations 1 1v rP ; 1 1
1

f Q
r

  ; r = Transformer Parameter 

Loop Equation 1 ( ) 0e ocP P P s     

Node Equation 1 0eQ Q   

Result after Substitutions 1 1( )oc ev rP s rZ Q   

Final Result 2
1 1( )oc ev rP s r Z f   or 1 1( )e ev V s M f   

Converted Equivalent A-source ( ) ( )e ocV s rP s  

Converted Equivalent Generalized Impedance (In Series) 2
e eM r Z  

 
Table 2  Domain Conversion of a Gyrator-coupled System 

Formulation Step Result 

Equivalent-impedance Constitutive Equation e e eP Z Q  

Gyrator Constitutive Equations 1 1v MQ ; 1 1
1

f P
M

  ; M = Gyrator Parameter 

Loop Equation 1 ( ) 0e ocP P P s     

Node Equation 1 0eQ Q   

Result after Substitutions 1 1[ ( ) ]oc
e

M
v P s P

Z
   

Final Result 
2

1 1( )oc
e e

M M
v P s f

Z Z
   or 1 1( )e ev V s M f   

Converted Equivalent  A-source ( ) ( )e oc
e

M
V s P s

Z
  

Converted Equivalent Generalized Impedance (In Series) 
2

e
e

M
M

Z
  

 

 
 

Fig.7  A Hydraulic Actuator System for Operating a Mechanical Load 

 
that equation, the system transfer function is obtained.

 In the second stage of this example, the trans-

fer-function linear graph (TFLG) corresponding to the 

original LG is sketched. It is appropriately reduced by 

combining branches. It is then converted it into a 

TFLG that is entirely in the mechanical domain (the 

output domain). From that, the system transfer func-

tion is obtained while confirming that it is identical to 
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what was obtained before. 

The linear graph of the system is shown in 

Fig.8.The particular choice of the primary loops (five), 

and the primary nodes (6 – 1 = 5) are indicated on the 

LG. The system has four independent energy storage 

elements ( ,   ,   ,   fI C m k ). Hence, the system is 4th 

order, with four state variables. The state variables are 

chosen according to the systematic approach, as: 

IQ  = volume flow rate of the water in the pipe before 

reaching the buffer tank, 

fP  = gauge pressure of the water at the bottom of the 

buffer tank, 

mv  = velocity of the mechanical load (and also of the 

actuator piston), and 

kf  = spring force of the mechanical load (attached to 

the actuator piston). 
 

State-space Shell: 

I
I

f
f f

m
m

k
k

dQ
I P

dt
dP

C Q
dt

dv
m f

dt
df

kv
dt









 

 

Other Constitutive Equations: 

1
2

2 1

Fluid-mechanical gyrator

R R

v v v

b b

P RQ

P R Q

f bv

Q
v

A
f AP





 

  

 

 

Node Equations: 

 

1 2

Node 1: 0 useless ;  Node 2: 0;   

Node 3: 0;  

Node 4: 0;  Node 5: 0

s I I R

R f v

v m k b

Q Q Q Q

Q Q Q

Q Q f f f f

   
  

      

 

 

Loop Equations: 

1 2

Loop 1: - ( ) 0;  Loop 2: 

0;   Loop3: 0;  

Loop 4: 0;  Loop 5: 0 

f R I s

v f m

k m b m

P P P P t

P P P v v

v v v v

   

      

     

 

Eliminate Auxiliary Variables: 

( ) ( )

( )
I f R s f R s

f I s

P P P P t P RQ P t

P RQ P t

       

   
 

{From Loop1, R-constitutive, and Node 2 equa-

tions}  

1 2= = f R v I I I mQ Q Q Q Q Q Av Q Av         

{From Node 3, Node 2, Node 4, and Loop 3 

equations} 

 
 

2 1

1

2

2

2( )

m k b k b

v f k m

v v f k m

v f k m

v f k m

v m f k m

v m f k

f f f f AP f bv

A P P f bv

A R Q P f bv

AR Q AP f bv

AR Av AP f bv

A R v AP f bv

A R b v AP f

      

    

    

    

    

    

    
 

{From Node 5, Gyrator-constitutive, Loop 2, 

Loop 5, Rv-constitutive, Node 4, and Loop 3 equations} 

k mv v   {From Loop 4 equation} 

 

State Equations: 

2

( )                           

                                     

( )                 

                                                    

I
I f s

f
f I m

m
f v m k

k
m

dQ
I RQ P P t

dt
dP

C Q Av
dt

dv
m AP A R b v f

dt
df

kv
dt

   

 

   



 

Output = mv  

 

Vector-matrix Formulation:  

State vector 
T

I f m kQ P v f   x  

Input vector  [ ] ( )su P t u  

Output vector  [ ] my v y  

 

State-space Model: 

 
 

x Ax Bu

y Cx Du


 

with 
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2

1
0 0

1
0 0

( ) 1
0

0 0 0

f f

v

R

I I
A

C C

A R bA

m m m
k

   
 
    
 

  
 
  

A  ; 

1

0

0

0

I
 
 
 

  
 
 
  

B  ;  0 0 1 0C  ;  0D  

To get the input-output differential equations, first 

the state equations are written as: 

 

1 11 1 12 2 1x a x a x b u   

 

 (6) 

 2 21 1 23  x a x a y    (7) 

 32 2 33 34 4 y a x a y a x     (8) 

 4 43  x a y   (9)

 

with, 

11 12 21 23 32

2

33 34 43 1

1 1
;  ;  ;  ;  ;  

( ) 1 1
;  ;  ;  

f f

v

R A A
a a a a a

I I C C m

A R b
a a a k b

m m I

    


   

 

Now, these 4 state equations have to be combined 

into a single differential equation in u and y only. This 

is done as follows. 

Substitute (8) into (9) to eliminate x4: 

 32 2 33 43   
d

m y a x a y a y
dt

     

 33 2   +m y a y ky Ax       (10) 

Substitute (7) into (6) to eliminate x1: 

   2 23 11 2 23 12 2 1f f
d

C x a y a C x a y a x b u
dt

       

2 2 2  f fIC x RC x x AIy ARy u           (11) 

Substitute (10) into differentiated (11) to elimi-

nate x2: 

 

 

 

2

332

33

33

  

1
 

f

f

IC d
my ma y ky

A dt
RC d

my ma y ky
A dt

my ma y ky AIy ARy u
A

  

  

     

 

 

    

 

4 3 2

334 3 2

3 2

333 2

2

332

2

2

[  ]

[ ]

1
[ ]

 

f

f

IC d y d y d y
m ma k

A dt dt dt
RC d y d y dy

m ma k
A dtdt dt

d y dy
m ma ky

A dtdt

d y dy du
AI AR

dt dtdt

  

  

  

  

 

By substituting for a33 and rearranging, the I-O 

differential equation is obtained: 

4 3 2
2

4 3 2

3 2
2

3 2

2
2

2

2

2

[ ( )  ]

[ ( ) ]

1
[ ( ) ]

 

f
v

f
v

v

IC d y d y d y
m A R b k

A dt dt dt
RC d y d y dy

m A R b k
A dtdt dt

d y dy
m A R b ky

A dtdt

d y dy du
AI AR

dt dtdt

   

   

   

  

 

24 3 2

4 3 2

23 2

3 2

22

2

2

2

( )

( )

( )

 

f f v f

f f v f

v

IC m IC A R b IC kd y d y d y

A A Adt dt dt

RC m RC A R b RC kd y d y dy

A A A dtdt dt

A R bm d y dy k
y

A A dt Adt

d y dy du
AI AR

dt dtdt


  


  


  

  

 

Now, group the like terms, and multiply 

throughout by A:    

4 3
2

4 3

2
2 2

2

2

( )

( )  

( )  

f f v f

f f v

f v

d y d y
IC m IC A R b RC m

dt dt

d y
IC k RC A R b m A I

dt
dy du

RC k A R R b ky A
dt dt

     

      

      

 

Or, 

4 3
2

4 3

2
2 2

2

2

( )

( )  

( )
( )  

m m
f f v f

m
f f v

m s
f v m

d v d v
IC m IC A R b RC m

dt dt

d v
IC k RC A R b m A I

dt
dv dP s

RC k A R R b kv A
dt dt

     

      

      

 

As expected, a 4th order input-output differential 
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equation model is obtained for this 4th order system 

(which has 4 independent energy storage elements). 

The corresponding system transfer function (by 

changing 
d

dt
 to s): 

4 2 3

2 2 2

2

( )

( ) ( )

( )

( )

m

s f f v f

f f v

f v

v s As

P s IC ms IC A R b RC m s

IC k RC A R b m A I s

RC k A R R b s k


     

      
     

 (12) 

For the next part of the example, the trans-

fer-function linear graph (TFLG) of the LG in Fig.8 is 

sketched as in Fig.9. The fluid domain is now con-

verted into the Thevenin form, as shown in Fig.10. 

Further reduction of the LG has been done as well, by 

combining the two parallel branches: thek-branch and 

the b-branch in the mechanical domain, into a single 

branch with mobility M. Here,  

 

1

1
( )

s
sk bM

s bs k
k b


 


 

(13) 

The following results are obtained by following 

the usual procedure for Thevenin circuit develop-

ment: 

Equivalent (open-circuit) pressure source, 

 

1 1
( ) ( )

1
( )

1
( )

( ) 1

oc s
f

f

s
f

P s P s
C sIs R

C s

P s
C s Is R

  
 

 
 

 (14)  

Note: The potential divider (pressure divider, in 

the fluid domain) method is used in writing this equa-

tion. 

Equivalent fluid impedance, 

1
( )

1 ( ) 1( )

f
e v v

f

f

Is R
C s Is R

Z R R
C s Is RIs R

C s

 


   
  

 

(15) 

Note: Here, after killing (i.e., shorting) the fluid 

source, combine the resulting two parallel branches 

and then add the series branch. 

Next, convert the fluid domain into an equivalent 

mechanical domain, through the gyrator (flu-

id-mechanical energy converter). The equivalent 

TFLG shown in Fig.11 is obtained. This equivalent 

system is entirely in the mechanical domain. 

The domain conversion of the original gyra-

tor-coupled two-domain system is carried out as fol-

lows: 

 

Constitutive Equations for Gyrator: 

1
1

mv Q
A

 ; 2 1f AP   

Loop Equation (with constitution equation for Ze 

substituted): 1 ( ) 0e I ocP Z Q P s     

Substitute the node equation 1 0IQ Q  :  

1 1 ( ) 0e ocP Z Q P s     

Substitute the Gyrator equations, to eliminate the 

fluid-domain variables: 

2 ( ) 0e m oc
f

Z Av P s
A
   ,  

or: 22

1 1
( )m oc

e e

v P s f
AZ A Z

   

This result has only the mechanical side variables 

of the output branch of the gyrator (i.e., vm and f2). 

From this result, it is obtained: 

Equivalent velocity source,  

 

  1
( )e oc

e

v s P s
AZ

  (16) 

Equivalent series mobility, 
2

1
e

e

M
A Z

  (17) 

In Fig.11, the equation of the first branch in the 

equivalent system is: 

 
  2m e ev v s M f   (18) 

Note: The direction of f2 in the first branch of the 

TFLG that is entirely in the mechanical domain (see 

Fig.11) is opposite of what is in the output branch of 

the gyrator in the original TFLG (see Fig.10). This is 

the reason for the sign reversal of the f2 term in (18). 

The combined mobility of the two parallel 

branches in Fig.11 is: 
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1

1 1( )
m

M MmsM
MmsM

ms


 


 

  (19) 

To get the system transfer function, an ex-

pression for vm (the output) is needed. For this, use 

the familiar, “potential divider” approach (in the 

present “mechanical” situation, use the analogous, 

“velocity divider” approach) in Fig.11: mv   

( )
( )

m
e

e m

M
v s

M M



 

Into this equation, substitute (16), then (14): 

1
( )

( )

1 1
( )

( / 1) ( ) 1

m
m oc

ee m

s
e e m f

M
v P s

AZM M

P s
AZ M M C s Is R

  



    

 

The system transfer function is, 

1

( ) ( / 1) ( ) 1
m

s e e m f

v
TF

P s AZ M M C s Is R
 

    

 

Now substitute (19), (17), and (13): 

2

2

2

1
1 1

( 1) ( ) 1

1
( ) ( ) 1

( ) ( ) 1

e f
e

e f

e f

TF
Mms

AZ C s Is R
MA Z

A

ms A Z C s Is R
M

A
bs k

ms A Z C s Is R
s


      


     


      

 Now substitute (15): 

2

( ) 1

( ) 1

v
f

f

A
TF

bs k Is R
ms A R

s C s Is R

C s Is R


             
   

 

2 2

( ) 1

( ) 1

v
f

f

As

Is R
ms bs k A s R

C s Is R

C s Is R


             
   

 

 
 

2 2

2

( ) ( ) 1 ( )

( ) 1

f

v f

As

ms bs k C s Is R A s Is R

A R s C s Is R


       
 
   

Simplify: 

 2

2 2 2 2 3

2 2 2

( ) ( ) 1f

v f

v f v

As
TF

ms bs k C s Is R

A Is A Rs A R C Is

A R C Rs A R s


     
 
   
 
  

 

Or, 

2

2 2 2

2 2 3 2 2 2

( ( ) ( )

( )

f f

f

v f v f v

As
TF

ms C s Is R bsC s Is R

kC s Is R ms bs k A Is

A Rs A R C Is A R C Rs A R s


    
 
      
 

    
 

Or, 

4 3 3 2

2 2 2 2

2 2 3 2 2 2

f f f f

f f

v f v f v

As
TF

mC Is mC Rs bC Is RbC s

kC Is RkC s ms bs k A Is

A Rs A R C Is A R C Rs A R s


    
 
      
 

    
 

Or, 

4 2 3

2 2 2

2 2

f v f f f

f v f f

f v

As
TF

mC Is A R C I bC I mC R s

kC I A R C R RbC m A I s

RkC A R A R b s k


     

      
     

 

This result is identical to (12), which is what was 

obtained from the time domain approach. 

4  Conclusion 

Mechatronic modeling incorporates the four fea-

tures, integrated, unified, unique, and systematic. This 

definition extends to mechatronic design and control 

as well. The linear graphs (LGs) facilitate the metho-

dology of mechatronic modeling. The time-domain 

modeling by LGs can be extended into frequen-

cy-domain modeling. This paper outlined the metho-

dology of mechatronic modeling in both time domain 

and frequency domain, through the use of linear 

graphs. A typical mechatronic system incorporates 

more than one physical domain. The model of such a 

multi-physics system can be simplified for the subse-

quent analysis by transforming it into an equivalent 

single-domain model, which is entirely in the output 

domain. The paper described this method of domain  
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Fig.8  Linear Graph of the System 

 

 
 

Fig.9  The Transfer-function Linear Graph of the Multi-domain System (Fluid-mechanical) 

 

 
 

Fig.10  The TFLG with the Fluid Domain in the Thevenin Form 
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Fig.11  The Equivalent TFLG Entirely in the  

Mechanical Domain 

 

transformation (conversion). Practical engineering 

examples were presented to illustrate the application 

of the presented methodologies. 
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