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Abstract: To  solve  the  sparse  reward problem of  job‐shop  scheduling by deep  reinforcement 

learning,  a  deep  reinforcement  learning  framework  considering  sparse  reward  problem  is 

proposed. The  job shop scheduling problem is transformed into Markov decision process, and 

six  state  features  are designed  to  improve  the  state  feature  representation by using  two‐way 

scheduling method,  including  four  state  features  that distinguish  the optimal action and  two 

state  features  that are  related  to  the  learning goal. An  extended variant of graph  isomorphic 

network  GIN++  is  used  to  encode  disjunction  graphs  to  improve  the  performance  and 

generalization  ability  of  the model.  Through  iterative  greedy  algorithm,  random  strategy  is 

generated as the initial strategy, and the action with the maximum information gain is selected 

to expand it to optimize the exploration ability of Actor‐Critic algorithm. Through validation of 

the trained policy model on multiple public test data sets and comparison with other advanced 

DRL methods and scheduling rules, the proposed method reduces the minimum average gap by 

3.49%, 5.31% and 4.16%, respectively, compared with the priority rule‐based method, and 5.34% 

compared  with  the  learning‐based  method.  11.97%  and  5.02%,  effectively  improving  the 

accuracy of DRL to solve the approximate solution of JSSP minimum completion time. 
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0 Introduction 
The Job shop scheduling problem (JSSP) is a popular 

NP-hard combinatorial optimization problem that can 
simulate real-world scheduling problems in 
manufacturing, planning, and engineering. More and 
more researchers tend to develop approximate methods to 
obtain satisfactory solutions, which are mainly divided 
into: meta-heuristic method, heuristic method based on 
priority rule and learning method[1,2]. With the increase of 
production scale and operation complexity, it has become 
very important to study effective scheduling technology 
to improve production efficiency, and more scholars have 
begun to study learning-based methods to solve such 
problems. WANG et al.[3] adopted the DRL learning 

strategy model to solve JSSP. In the proposed method, 
PPO[4] was adopted to find the optimal scheduling 
strategy. Compared with the traditional scheduling 
method, the proposed method could realize adaptive and 
real-time production scheduling, and the expression of 
state features may not be perfect, resulting in multiple 
optimal solutions for the candidate action set. ZHANG et 
al.[5] combined graph neural network (GNN)[6] and PPO 
to solve JSSP by learning the PDR of the task A policy 
model of the same size can solve problems of more size 
types through model generalization. Due to the sparse 
reward problem, the agent needs to explore a large 
number of state Spaces to find the state features that 
obtain rewards, and it is easy to fall into local optimality, 
which ultimately limits the accuracy of the policy model 
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to solve the approximate solution of JSSP. At present, 
there are few researches on solving sparse reward 
problem in JSSP by deep reinforcement learning. YUAN 
et al.[7] proposed a utilization scheduling rule that 
maximizes the cumulative rewards of all agents through 
Boltzmann utilization to avoid local optimality caused by 
sparse rewards. LEI et al.[8] proposed an end-to-end 
hierarchical reinforcement learning framework for 
large-scale flexible job shop scheduling problems. They 
designed a high-level agent for resscheduling and two 
low-level agents for job assignment and machine 
selection, and solved the sparse reward problem by means 
of multilevel controllers, achieving good results. However, 
the subtask division of hierarchical reinforcement 
learning requires a lot of knowledge and experience, and 
needs to design multiple strategies and learning processes, 
resulting in high algorithm complexity. 

The problems in solving JSSP by using deep 
reinforcement learning are as follows: (1) The 
construction of state features is not perfect, and the 
relationship between state features and learning 
objectives is not established, which makes the learning 
time of agents longer and reduces the decision-making 
efficiency of agents; (2) The deficiency of policy model 
construction affects the ability of policy network to 
explore the optimal solution, limits the decision-making 
ability of agents, and affects the generalization ability of 
policy model and the ability to solve JSSP; (3) Lack of 
research on the sparse reward problem makes the agent 
need to explore a large number of potentially invalid 
states to find those states that can obtain rewards, and the 
agent is easy to fall into the local optimal solution or 
completely unable to learn. 

In order to better apply the learning method to JSSP, 
a deep reinforcement learning framework is proposed to 
solve the sparse reward problem and improve the 
accuracy of solving the approximate solution of JSSP. In 
this paper, GIN++ is adopted to embed the node coding. 
By introducing an adjacency matrix regularization 
mechanism, the network can map the model to a specific 
space. The performance and generalization ability of the 
model are improved. The bidirectional scheduling method 
is used to design 6 state features to improve the state 
feature representation, including 4 state features to 
distinguish the optimal action and 2 state features related 
to the learning goal. Taking the quality difference between 
the predicted completion time and the theoretical 
completion time as the reward design, the state feature 
representation proposed in this paper not only satisfies the 
distinction of state features, but also realizes the 
connection with the learning goal, which is conducive to 
the decision-making of the policy network, but also 
compensates the agent's ability to explore the state space 
to obtain rewards, and avoids the agent falling into the 
local optimal or unable to learn problem. In the face of 
complex combinatory optimization problems, Actor- 
Critic algorithm will be affected by local optimal 
solutions and gradient instability, etc. In each iteration of 
Actor-Critic algorithm improved by IG algorithm, IG can 

use greedy algorithm to construct new policy parameters, 
that is, the optimal action based on the current strategy. 
Doing so helps the Actor-Critic algorithm explore the 
search space more efficiently and find better strategies. 
Through continuous iterative improvement, the search 
ability of Actor-Critic algorithm is improved to obtain 
better strategy performance. A feasible method for job 
shop production scheduling is proposed. 

1 Problem Description 
Standard JSSP can be described as: Scheduling 

n job Ji={J1, J2, ..., Jn} to be processed on K machine 
Mk={M1, M2, ..., Mk}. Each job has an operation, each job 
has m operations Oi,j={Oi,1, Oi,2,...,Oi,m} processed in a 
certain order, irepresents the job index of the operation, j 
represents the machine index of the operation. The 
processing time of each operation on the machine is Ti,j,k, 
the start time of operation processing is ,

s
i jt , and the end 

time of operation processing is ,
e
i jt . The optimization 

objective of this paper is to minimize the completion time, 
and the assumptions and constraints are as follows: 

1.1 Basic Assumptions 
(1) Capacity constraint: Each machine can handle at 

most one operation at the same time. 
(2) Non-preemptive: Each machine can only process 

one operation before processing the next operation. 
(3) The machine will not fail when processing the 

job operation. 
(4) In the process of job processing, the preparation 

and transportation time between operations is ignored. 

1.2 Mathematical Model 
1.2.1 Objective function 

Optimization goal: minimum completion time. 
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1.2.3 Constraints 
1) Each operation can only be processed on one 

machine.  kjiX
Kk kji  , , ,1 , ,  

     (4) 
2) The start time of each operation on the machine is 

greater than or equal to zero. 
 , , ,  ,  , 0,  ,  ,  e

i j i j k i j kt T X i j k （ ） ≥     (5) 
3) Constraints on the sequence of operations. 
 , 1 , ,  ,  ,  , 0,  ,  ,  e e

i j i j k i j i j kt T t X i j k   （ ） ≥    (6) 
4) Only one operation can be performed on each 
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machine. 
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5) The processing time of the operation on the 
machine is greater than zero. 

 , , ,  , 
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6) The initial processing time of the operation on the 

machine, where , ,
e
g h kt  represents the completion time of 

the previous operation on the same machine. 
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7) Machine processing completion time. 
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8) Machine processing operation time. 
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9) Job processing time. 
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JSSP is expressed as disjunctive graph[9] and 
modeled as topological structure of state and action, as 
shown in Fig.1(a) represents a 3×3 JSSP instance. The 
black arrows are connected arcs, indicating the priority 
relationship between adjacent operations of the same job. 
Dotted lines of the same color indicate operations 
processed on the same machine. Fig.1(b) is a complete 
solution that determines the disjunction arc direction for  

 

 
 

Fig.1 Disjunctive diagram representation 

each machine. The set ,{ | , } { , }i jO O i j S T ＝ represents 
each operation node in the disjunctive graph, and S and T 
represent the start and end of job processing respectively, 
which are all virtual values. 

2 Construct the DRL Framework 
for Solving JSSP 

The JSSP is described by disjunction graph, the state 
features are embedded by GIN++ network, and the optimal 
strategy model is trained by PPO algorithm under 
Actor-Critic framework. The overall deep reinforcement 
learning framework for solving JSSP is shown in Fig.2. 

 

 
 

Fig.2 General framework for solving JSSP 
 

2.1 MDP Definition for the Job Shop 
The JSSP problem is modeled as a Markov decision 

model (MDP). The standard MDP consists of (S, a, R, γ, 
P) five parts, which represent state, action, reward, 
discount factor and state transition probability in turn. 
2.1.1 Status 

State feature design should not only distinguish 
states, but also relate to learning goals. The selection of 
state features should take into account their impact on the 
realization of the goal. The selection of state features 
related to the goal can provide a more informative and 
effective representation, so as to help the agent better 
understand the environment, make decisions and optimize 
strategies. According to the state of the disjunctive graph 
in the solution, 6 state features are designed: 

1) , ( )i j tI s : Denotes the scheduling status of node Oi, j 
in the disjunctive graph when state st time is obtained, 
which is 0 when the node is not scheduled and 1 when it is 
scheduled. 
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2) , ( )e
i j tt s : Represents the estimated completion 

time of Oi, j. 
 jit

s
jit

e
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Where , ( )s
i j tt s  represents the estimated start time of 

Oi, j at state st, recursively, and if Oi, j represents the first 
operation of the job, it represents the time for the machine 
to complete the other operations of the job. 

3) ( )
kM tt s : When the state is st, the completion time 

of the remaining operation on the machine after the 
machine Mk completes the operation Oi, j is calculated as 
follows: 

 
ksTst

mj
ni

ji
tkjitM k





,)()(
,

,,

  
    (15)

 
Where i and jindicate the indexes of the scheduled 

operations. If Oi, j is from the set of unscheduled 
operations, it represents the maximum estimated 
completion time of all unscheduled operations on the 
same machine, calculated using two-way scheduling. If it 
is not from the candidate operation set, the value is 0. 

4) ( )
iJ tt s : Represents the completion time of the 

remaining operations in Ji after the completion of Oi,j in 
state st. The formula is as follows: 
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j and k indicate the indexes of the scheduled 
operations. If Oi,j comes from the set of unscheduled 
operations, it represents the total completion time of all 
unscheduled operations in the same job, which is 
calculated using two-way scheduling.If it is not from the 
candidate operation set, the value is 0. 

5) ( )
kM tT s : Represents the maximum value of the 

actual completion time of Mk exceeding the estimated 
completion time when the state is st. The calculation 
formula is as follows: 

 ( ) max{ ( ) ( ) ( )}
k k

e
M t k t M t k tT s t s t s T s         (16) 

When Oi, j is completed on the machine, the 
completion time of the operation is the same as the 
completion time of the machine, i.e. ,( ) ( )e e

k t i j tt s t s＝ , where 
( ) ( )

k

e
k t M tt s t s＋ represents the estimated completion time of 

the machine Mk at state st, and ( )k tT s  represents the 
continuous completion time of all operations on the 
machine, i.e., the sum of all operation times on the 
machine Mk. 

6) ( )
iJ tT s : Represents the maximum value of the 

actual completion time of Ji exceeding the estimated 
completion time when the state st is applied. The formula 
is as follows: 

 )}()()(max{)( , titJt
e
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Where , ( ) ( )
i

e
i j t J tt s t s＋ represents the estimated 

completion time of job Ji at state st, and the last item 
( )

iJ tT s  represents the continuous completion time of job  

Ji, which is the sum of all operation times in job Ji. 
According to the definition of the state features of 

disjunctive graph nodes, the feature vector of disjunctive 
graph nodes is constructed, and the state feature 
information of unscheduled nodes is aggregated by 
bidirectional scheduling. As shown in Fig.3, the 
scheduling along the direction of node S to T is forward 
scheduling, and the scheduling along the direction of node 
T to S is reverse scheduling. In Fig.3, when the state is s1, 
the scheduled node is O3,1 and the candidate scheduling 
set is {O1, 1, O1, 2, O1, 3}. As shown in Fig.4(a), the state 
feature 5 of O1,1 when the state is s1 is M1, M2, M3 and the 
final completion time exceeds the maximum value of the  

 

 
 

Fig.3 State transition process 



92 CAI Anjiang et al: Deep reinforcement learning solves job-shop scheduling problems 
 
 
 
 
 

 
 

Fig.4 Reverse scheduling Gantt chart of operations at state s1 
 

continuous processing time, that is, max{16–5–2–3, 
19–3–5–3, 11–7–4}=8. State feature 6 is J1, J2, J3 The 
final completion time exceeds the maximum value of the 
continuous processing time part, that is, max{19–4–15, 
19–9, 14–8}=6, so the state feature vector of O1,1 at state 
s1 is O1,1={0, 3, 12, 9, 8, 6}. Similarly, as shown in 
Fig.4(b), when O1,2 is in state s1, state feature 5 is 
max{14–2–5–3, 18–3–3–5, 11–4–7}=7, state feature 6 is 
max{15–15, 18–7–9, 8–8}=2, and the state feature vector 
of O2,1is O2,1=[0, 3, 12, 9, 8, 6] when it is in state s1. 
Similarly, as shown in Fig.4(c), the state feature 5 of O3,2 
in state s1 is max{14–2–5–3, 23–5–3–3, 11–4–7}=12, the 
state feature 6 is max{15–15, 18–7–9, 23–8}=15, and the 
state feature vector of O3,2 in state s1 is O3,2=[0, 5, 3, 3, 12, 
15]. In state s1, where O1,1 and O2,1 state features 1, 2 are 
the same, it is impossible to distinguish the optimal 
solution, and the design of state features 3, 4 complements 
the deficiency of state feature representation.However, 
state features 1 to 4 only satisfy the distinction state, and 
state 3 of O1,1 and O2,1 is different, which has no obvious 
connection with the minimum completion time goal of 
DRL, leading to the sparse reward problem. A smaller 
value of state feature 5 indicates a shorter waiting time for 
the machine to process, and a smaller value of state 
feature 6 indicates a shorter waiting time for the job 
operation to be processed in the buffer. Therefore, the 
smaller the value of status feature 5 and 6, the earlier the 

completion time of the job, that is, the higher the priority 
of the job operation. Therefore, operation O2,1 is selected 
when the status s2 is used. State features 5 and 6 provide 
more efficient states and obtain more cumulative rewards, 
making up for the sparse reward problem caused by 
insufficient correlation between DRL state features design 
and learning objectives. 
2.1.2 Movements 

The number of candidate job sets is |J|, and each job 
provides at most one operation during the decision step to 
construct the action space At, and the size of the action 
space At does not exceed |J| and becomes smaller with the 
decision process. 
2.1.3 Status Change 

The state transition depends on the environment, and 
the generation of a new state is equivalent to updating the 
disjunctive arc direction in the disjunctive graph. When 
the priority of a job operation in a certain state is 
determined, the operation to be scheduled is scheduled on 
the machine according to the earliest available time of the 
machine, and the disjuncting arc direction on the machine 
is updated. As shown in Fig.3, after the agent completes 
an action, the environment simulator updates the state 
from st to st+1 and generates the corresponding disjunction 
diagram in the new state. 
2.1.4 Reward 

With the goal of minimizing the completion time, the 
processing order of each job operation on the machine is 
gradually arranged according to the priority of the job 
operation. The reward function R(st, at) is the difference 
between the pairs of two states st and st+1. Formula (18), 
where , , 1 , , max ( )e e

i j t i j i j kt s t T   calculates the completion 
time of Ji at state st recursively. The discount factor is γ=1, 
the cumulative reward is R, and the formula is (19), where 
Ti(s0) is the constant representing the theoretical 
completion time of the job, and s|O|–2 represents the set of 
node states except for {S, T} nodes. The calculation of R  
is related to the representation of state feature 6, and the 
reward in this paper is calculated using state feature 6. 
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The disjunctive graph in the constructed MDP 
presents the priority constraints of the job operations, the 
processing sequence of the job operations on the 
corresponding machine, and the time of the machine to 
process each pending job operation, which reflects the 
scheduling state of the JSSP, the disjunctive graph structure, 
and the job data. Therefore, it is very important to extract 
all the state information contained in the disjunction graph 
and use it to complete effective scheduling. 

2.2 Disjunctive Graph Coding 
Therefore, an extended variant of graph isomorphic 
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network (GIN)[10], GIN++, is used to encode disjoint 
graphs, which can map models into specific Spaces by 
introducing an adjacency matrix regularization 
mechanism, thereby improving model performance and 
generalization ability. According to the definition of 
disjunctive graph, each node of disjunctive graph is 
encoded by several layers of GIN++ to achieve the 
embedding of state features. Compared with GIN, GIN++ 
superimposes the new feature vector of the current node 
with the previous feature vector to obtain the final feature 
representation of the current node GIN++ does l iterative 
updates on each node, computes p-dimensional 
embeddings, and the update at iteration l is expressed as: 

 
( ) ( ) ( 1)

( 1) 1
( )

((1 )

  )
l

l l l l
v v

l l
u va N v

h MLP h

h h
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 

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Where ( )
l

lMLP  is a multi-layer perceptron (MLP) 
with parameter θl for iterating l and then normalizing, ε is 
a learnable arbitrary parameter, N(v) is a neighborhood of 
v, l

vh is a representation of node v when iterating l, and 
0
vh  represents the original feature of the input. After l 

iterations of updating, a global representation of the entire 
graph can be obtained using the pooling function L, which 
takes the embeddings of all nodes as input and outputs the 
p-dimensional vector p

Gh R , with average pooling. 

2.3 Optimization of Policy Network 
MLP is used to construct a deep neural network for 

state representation and strategy learning. The strategy 
network actor-critic in this paper consists of two parts, in 
which the Actor network is used to output the probability 
distribution of the action; The Critic network is used to 
output estimates of action values. In order to improve the 
exploration ability and learning efficiency of the strategy 
network, Iterated Greedy Algorithm (IG)[11,12] is adopted 
to optimize the Actor-Critic algorithm. The specific steps 
are as follows: 

1) Initialize the policy: Use the IG algorithm to 
select the random policy from the policy space as the 
initial policy. 

2) Actor-Critic policy update: Initial policy parameters 
are used to update the Actor-Critic algorithm through the 
gradient rise method to optimize the policy network and 
improve the current policy. 

3) IG generates new policy parameters: IG algorithm 
is used to calculate information entropy, select actions 
with maximum information gain for expansion, and find 
the optimal policy parameters. 

4) Evaluate new policy parameters: Test the newly 
generated policy parameters in the environment and 
calculate its performance in the environment. 

5) Update the policy and value function: According 
to the evaluation results, use the Actor-Critic algorithm to 
update the policy and value function. The parameters of 
policy network and value function network are optimized 
to approximate better policy and value function. 

6) Iterative update: Repeat steps 3-5 to continuously 

improve and search for better strategies through multiple 
iterations. In each iteration, IG generates new policy 
parameters, which are evaluated and updated by 
Actor-Critic. 

3 Experimental Verification 
According to the number of jobs and machines in the 

training set data, policy models of different sizes are 
trained, including 10×10, 10×15, 10×20, 15×10, 15×15, 
20×10, 20×15, 20×20, 30×10, 30×10, 30×15, 30×20. 
DUM example and LA example were used to evaluate the 
policy model. 

3.1 Experimental Data and Evaluation Indicators 
3.1.1 Data Set 

Experimental data includes training, validation, and 
test datasets. The training data set and the experimental 
data set are combined, and the common benchmark 
instance is the test data set. The operation processing time 
range is {1, 90} or {1, 199}, and the number of random 
seeds is 200. 
3.1.2 Evaluation Indicators 

In terms of performance evaluation, the relative 
deviation percentage (RPD)[13] is used as a metric, also 
known as the optimality gap. Literature [5], [14] and[15] 
also adopted RPD index as the main evaluation index: 

 
*

max max
*

max

100%T TRPD
T


＝   (21) 

Where *
maxT represents the optimal solution or 

approximate optimal solution obtained by an exact 
method, and Tmax represents the optimal solution obtained 
by an approximate method. 

3.2 Parameter Settings 
Program in Windows 11 64bit computer (CPU: 

AMD Ryzen 5 5600 6-Core Processor 3.50 GHz,GPU: 
NVIDIA GTX 1080Ti 16GB memory), based on 
Python3.10.9, Pytorch2.0.1 environment. 

The learning rate lr of PPO training algorithm is 
2×10–5, the clipping parameter ε is 0.2, the discount factor γ 
is 1, the critical loss coefficient Cv is 1, the strategy loss 
coefficient Cp is 2, and the entropy loss coefficient Ce is 0.01. 

3.3 Validity Verification 
3.3.1 Impact of Introducing IG Algorithm 

The improved policy model was compared with the 
policy model in literature [5] to verify the effectiveness of 
the introduced IG algorithm. As shown in Fig.5(a) and (b), 
the training results of the two policy models on the 20×15, 
{1, 99} and 20×15, {1, 199} data sets are shown. After 
the introduction of IG algorithm, the learning effect of the 
strategy model is not good at the initial training stage, but 
its exploration ability is enhanced and it rapidly converges 
with the increase of training times. Moreover, the learning 
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effect reaches the best when the iteration is about 5 times, 
and the learning effect reaches the best and tends to be 
stable when the iteration is about 25 times. When facing 
complex combinatorial optimization problems, the 
Actor-Critic algorithm adopted in [5] will be affected by 
problems such as local optimal solution and gradient 
instability. In this paper, IG improves Actor-Critic 
algorithm. In each iteration, IG can use greedy algorithm 
to construct new policy parameters, that is, the optimal 
action based on the current strategy. This will help 
Actor-Critic algorithm to explore more efficiently in the 
search space and find better strategies. Through 
continuous iterative improvement, the search ability of 
Actor-Critic algorithm is improved to obtain better 
strategy performance. At the same time, the learning 
speed has been significantly improved, and the problem 
of poor solving effect of policy network caused by sparse 
rewards has been improved, and the decision-making 
ability of policy model has been effectively improved. 
3.3.2 Design the Influence of State Features 
Related to Learning Objectives 

The state feature representation proposed in this 
paper is compared with the feature representation not 
related to learning objectives and the state feature 

representation in literature [5] to verify the validity of the 
new state feature representation proposed. As shown in 
Fig.6(a) and (b), when the state feature representation 
does not design the state feature related to the learning 
goal, the training effect of the policy model is 
significantly improved on the 30x20, {1,99} data set, but 
not on the 30x20, {1,199} data set. Therefore, when the 
state feature representation does not design the state 
feature related to the learning goal, the solution effect of 
the strategy model is not significantly improved, and the 
improvement effect is not stable. The state feature 
representation method of [5] only satisfies the distinction 
of different state features, and does not further design 
state features related to learning objectives. The state 
feature representation proposed in this paper not only 
satisfies the distinction of state features, but also designs 
two state features related to learning goals on this basis, 
which makes up for the agent's ability to continue 
exploring state space to obtain rewards, and avoids the 
agent falling into local optimal or unable to learn 
problems. This paper provides a more informative and 
effective representation by selecting a state feature 
representation method related to the goal, which helps 
agents better understand the environment and make 
decisions and optimize strategies. 

 

 
 

Fig.5 Training effect of optimized strategy model on different data sets 
(a)The strategy model is trained on the 20×15, {1, 99} data set 

(b)The strategy model is trained on the 20×15, {1, 199} data set  
 

 
 

Fig.6 Validity of the new state feature representation 
(a) The effect of solving the new state feature on a 30x20, {1,99} data set 

(b) The effect of solving the new state feature on a 30x20, {1,199} data set 
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3.4 Generalization of Policy Model 

Table 1, Table 2 and Table 3 show the generalization 
ability of policy models of different sizes on TA, DMU 
and LA test sets under different training data sets and 
different data set sizes. As shown in Table 1, the 15×15 
and 20×15 policy models are suitable for solving medium 
and small size test datasets (15×15, 20×15, 20×20, 30×15), 
while the 20×20, 30×15 and 30×20 policy models are 
more suitable for medium and large size test datasets 
(30×20, 50×15, 30×15). 50×20, 100×20). As shown in 
Table 2, the policy model with the size of 20×15 has 
the strongest solving ability and generalization ability for  

instances in DMU data sets, while the policy model with 
the size of 30×20 has stronger solving ability for 40×20 
DMU data sets than the policy model with other sizes. As 
shown in Table 3, policy models with sizes 10×10, 15×15, 
20×15, and 20×20 have better solving power and 
generalization ability. To sum up, the solving ability and 
generalization ability of policy models with different sizes 
are affected by the size of the training data set. The data 
scale of the training data set in this paper is certain, and 
different policy models cannot achieve the best effect on 
each test instance. In Table 1, Table 2 and Table 3, 15×15, 
{1, 99}, 20×15, {1, 99} and 20×15, {1,199} with small 
data sets have better generalization ability. 

 
Table 1 Average optimality deviation value and average time on TA test set 

n×m 
15×15, {1, 99} 20×15, {1, 99} 20×20, {1, 99} 30×15, {1, 99} 30×20, {1, 99} 

Gap Time(s) Gap Time(s) Gap Time(s) Gap Time(s) Gap Time(s)
15×15 17.36% 0.83 19.11% 0.81 19.01% 0.68 18.65% 0.70 19.64% 0.69 
20×15 23.14% 1.17 20.00% 1.21 20.65% 1.06 24.03% 1.06 20.88% 1.02 
20×20 19.56% 1.57 18.93% 1.63 19.03% 1.57 21.56% 1.50 19.25% 1.57 
30×15 19.72% 1.94 21.92% 1.78 21.73% 1.81 23.72% 1.83 20.81% 1.71 
30×20 23.78% 2.58 23.40% 2.84 24.21% 2.41 23.54% 2.61 22.57% 2.80 
50×15 15.05% 3.12 14.89% 3.67 15.13% 3.60 15.04% 3.52 13.82% 3.83 
50×20 15.72% 5.06 16.16% 5.18 15.44% 4.73 17.01% 4.85 16.28% 5.49 

100×20 7.62% 18.21 7.11% 17.14 7.05% 17.18 6.90% 18.83 6.94% 18.04 
Average Gap 17.74% 4.31 17.69% 4.28 17.78% 4.13 18.81% 4.36 17.52% 4.39 

 
Table 2 Average optimality deviation value and average time on DMU test set 

n×m 
20×15, {1, 199} 20×20, {1, 199} 30×15, {1, 199} 30×20, {1, 199} 

Gap Time(s) Gap Time(s) Gap Time(s) Gap Time(s) 
20×15 24.40% 1.13 25.00% 1.02 26.21% 1.08 26.04% 1.10 
20×20 23.44% 1.47 24.29% 1.54 24.27% 1.53 23.57% 1.47 
30×15 29.63% 1.75 31.12% 1.71 31.87% 1.70 30.51% 1.70 
30×20 28.45% 2.46 30.59% 2.91 28.95% 2.60 29.07% 2.44 
40×15 25.30% 2.54 26.95% 2.50 26.55% 2.65 25.98% 2.59 
40×20 29.24% 3.56 30.66% 3.70 30.63% 3.83 28.70% 3.65 
50×15 24.88% 3.53 27.60% 3.50 25.92% 3.47 25.30% 3.40 
50×20 27.32% 5.35 30.93% 5.25 30.07% 5.91 27.98% 5.08 

Average Gap 26.58% 2.72 28.39% 2.76 28.06% 2.84 27.14 2.67 
 

Table 3 Average optimality deviation value and average time on LA test set 

n×m 
10×10, {1, 99} 15×15, {1, 99} 20×15, {1, 99} 20×20, {1, 99} 30×15, {1, 99} 30×20, {1, 99} 
Gap Time(s) Gap Time(s) Gap Time(s) Gap Time(s) Gap Time(s) Gap Time(s) 

10×5 12.77% 0.18 14.54% 0.19 12.55% 0.19 11.26% 0.18 21.30% 0.19 12.00% 0.20 
15×5 3.70% 0.25 3.88% 0.26 1.97% 0.26 3.03% 0.26 13.38% 0.28 2.19% 0.27 
20×5 2.99% 0.35 4.36% 0.38 3.96% 0.38 3.96% 0.34 5.17% 0.38 3.55% 0.38 

10×10 12.95% 0.34 16.88% 0.33 10.89% 0.34 13.10% 0.35 19.92% 0.36 12.87% 0.36 
15×10 13.94% 0.52 17.15% 0.55 13.31% 0.52 13.21% 0.57 18.23% 0.57 14.11% 0.54 
20×10 18.56% 0.74 14.86% 0.72 16.17% 0.83 16.91% 0.84 19.16% 0.82 16.85% 0.84 
30×10 3.39% 1.44 4.25% 1.51 5.15% 1.55 4.62% 1.60 7.13% 1.59 3.73% 1.53 
15×15 15.05% 0.89 14.38% 0.92 17.39% 0.85 15.53% 0.88 18.59% 0.93 16.25% 0.90 

Average Gap 10.42% 0.58 11.29% 0.60 10.17% 0.61 10.20% 0.62 15.36% 0.64 10.19% 0.62 
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3.5 Comparison of Approximate Solution Accuracy 
The baseline comparisons were SPT, FIFO, MWKR, 

[5], [14] and [16]. [5] GNN is used to embed the node 
code in the disjunction graph in fixed dimension, predict 
the state representation and reward calculation of the 
minimum completion time, and use Actor network to 
explore the state space and generate strategies and output 
actions.[14] GNN was used to learn node features 
embedded in JSSP spatial structure, and scheduling 
policies were derived to map embedded node features to 
scheduling actions. Node state changes were used as state 
features and reward calculations, and Actor networks 
were used to explore and generate strategies for state 
space and output actions.[16] A DRL framework called 
DGERD Transformer is proposed, which integrates 

disjunctive graph embeddings and attention mechanisms 
in DNN to solve JSSP based on attention mechanism and 
disjunctive graph embeddings. Priority constraints of job 
operations are used as state representations. Minimize the 
inverse of the maximum completion time as a reward 
setting.  

As shown in Table 4, the average solving gap of the  
strategy model trained by the proposed method is superior 
to other methods, increasing by 3.49% compared with the 
minimum average gap based on priority rules and 5.34% 
compared with the minimum average gap based on 
learning methods. As shown in Fig.7, among the 80 
groups of data in TA test data set, the results of this paper 
are superior to those of other control groups in 69 groups, 
and the optimal results account for 86.25%. Most current  

 

Table 4 Comparison of TA test set results 

n×m  SPT FIFO MWKR [5]  [14] [16]  Ours 

15×15 25.88% 23.11% 21.19% 25.96% 20.13% 35.38% 17.36% 

20×15 32.81% 30.02% 22.84% 30.03% 24.95% 32.09% 20.00% 

20×20 27.75% 27.67% 23.98% 31.61% 29.25% 28.33% 18.93% 

30×15 35.27% 30.22% 23.96% 33.00% 24.70% 36.43% 19.72% 

30×20 34.44% 30.90% 25.68% 33.62% 32.00% 34.67% 22.57% 

50×15 24.10% 20.11% 17.79% 22.38% 15.92% 31.86% 13.82% 

50×20 25.53% 23.18% 18.41% 26.51% 21.29% 28.04% 15.44% 

100×20 14.40% 12.75% 8.81% 13.61% 9.24% 17.89% 6.90% 

Average Gap 27.52% 24.74% 20.33% 27.09% 22.18% 30.59% 16.84% 
 

 
 

Fig.7 Comparison of TA instance test sets 



INSTRUMENTATION, Vol. 11, No. 1, March 2024  97 
 
 
 
 
 

learning-based methods use TA test sets to evaluate the 
performance of their strategy models, which also proves 
the effectiveness of the proposed methods. As shown in 
Table 5, the average solving gap of the strategy model 
trained by the proposed method is superior to other methods, 
which is 5.31% higher than the minimum average gap 
based on priority rules and 11.97% higher than the 
minimum average gap based on learning methods. As 
shown in Fig.8, among the 80 groups of data in the DMU 
test data set, our results were superior to those of other 
control groups in 74 groups, and the optimal results 
accounted for 92.50%. As shown in Table 6, the strategy 
model trained by the proposed method is better than other 

methods in solving the average gap, which is 4.16% higher 
than the minimum average gap based on priority rules and 
5.02% higher than the minimum average gap based on 
learning methods. Literature [14] has better generalization 
ability on 15x5 and 20x5. As shown in Fig.9, among the 40 
groups of data in the LA test data set, the results of this 
paper are superior to those of other control groups in 29 
groups, and the optimal results account for 72.50%. In 
general, the average RPD value of the solution results of 
DMU data set is 26.51%, which is the largest compared 
with the average RPD value of the solution results of TA 
and LA data sets, possibly because the processing time 
range of each operation in DMU data set is larger. 

 
Table 5 Comparison of DMU test set results 

m×n SPT FIFO MWKR [5]  Ours 

20×15 64.13% 37.18% 30.49% 38.95% 24.40% 

20×20 64.56% 32.43% 26.35% 37.74% 23.44% 

30×15 62.56% 39.29% 34.79% 41.86% 29.63% 

30×20 65.91% 36.57% 32.18% 39.48% 28.45% 

40×15 55.87% 35.08% 31.16% 35.38% 25.30% 

40×20 63.00% 39.72% 33.24% 39.38% 28.70% 

50×15 50.37% 34.74% 31.04% 36.20% 24.88% 

50×20 62.19% 41.38% 35.34% 38.86% 27.32% 

Average Gap 61.07% 37.04% 31.82% 38.48% 26.51% 

 

 
 

Fig.8 Comparison of DMU test data sets 
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Compared with the GNN node coding 
embeddings adopted in [5] and [14], this network can 
map the model to a specific space by introducing an 
adjacency matrix regularization mechanism, thus 
improving the performance and generalization ability 
of the model. Taking the quality difference between the 
predicted completion time and the theoretical 
completion time as the state representation and reward 
design, the state feature representation methods [5], [14] 
and [16] can only satisfy the distinction of different 
state features. On this basis, the state feature 
representation proposed in this paper can realize the 
connection with the learning goal and is conducive to 
the decision-making of the policy network. At the same 
time, it makes up for the agent's ability to explore the 

state space and get rewards, so as to avoid the agent 
falling into local optimal or unable to learn. In the face 
of complex combinatory optimization problems, 
Actor-Critic algorithm will be affected by local optimal 
solutions and gradient instability, etc. In each iteration 
of Actor-Critic algorithm improved by IG algorithm, 
IG can use greedy algorithm to construct new policy 
parameters, that is, the optimal action based on the 
current strategy. Doing so helps the Actor-Critic 
algorithm explore the search space more efficiently and 
find better strategies. Through continuous iterative 
improvement, the search ability of Actor-Critic 
algorithm is improved to obtain better strategy 
performance. But[16] it takes less time to solve 
large-scale problems. 

 
Table 6 Comparison of LA test set results 

n×m  SPT FIFO MWKR [14] Ours 

10×5 14.80% 17.95% 16.49% 16.06% 11.26% 

15×5 14.86% 9.57% 5.79% 1.08% 1.97% 

20×5 13.71% 7.96% 4.88% 2.12% 2.99% 

10×10 15.67% 25.32% 14.82% 17.05% 10.89% 

15×10 28.68% 29.40% 19.81% 21.96% 13.21% 

20×10 33.43% 24.45% 20.88% 27.25% 14.86% 

30×10 13.88% 11.16% 7.79% 6.27% 3.39% 

15×15 24.58% 25.29% 15.83% 21.40% 14.38% 

Average Gap 19.95% 18.88% 13.28% 14.14% 9.12% 

 

 
 

Fig.9 Comparison of LA test data sets 
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4 Conclusion 

① Six state features are designed, including four state 
features that distinguish the optimal action in the candidate 
set, and two state features that are related to the learning 
goal to improve the sparse reward problem, making it 
easier for the agent to capture effective state information, 
better understand the environment, and improve the 
learning effect and stability of the policy network. 

② By introducing IG algorithm to optimize 
Actor-Critic algorithm, IG algorithm is used to calculate 
information entropy, select actions with maximum 
information gain for expansion, and find the optimal 
policy parameters to optimize policy parameters, which 
effectively promotes the exploration ability of policy 
networks and improves the solution of sparse reward 
problem of policy networks. 

③ The generalization ability of the policy model is 
verified on the TA, DMU and LA test sets, where the 
results of the optimal approximate solution account for 
86.25%, 92.50% and 72.50%, respectively, which proves 
the effectiveness of the improved policy model to solve 
the minimum completion time of job-shop scheduling. 

④ The ability of the strategy model to solve the 
approximate solution of the minimum completion time 
was verified on the TA, DMU and LA test sets. The results 
showed that the minimum average gap was increased by 
3.49%, 5.31% and 4.16%, respectively, and the decibel 
was increased by 5.34%, 11.97% and 5.02%, respectively, 
compared with the minimum average gap based on the 
priority rule method. The accuracy of the approximate 
solution of the minimum completion time of job-shop 
scheduling is effectively improved. 
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