

INSTRUMENTATION, Vol. 11, No. 1, March 2024 https://doi.org/10.15878/j.instr.202300165

Article

Deep Reinforcement Learning Solves Job-shop Scheduling

Problems
Anjiang Cai1, Yangfan Yu1, * and Manman Zhao2

1 School of Mechanical and Electrical Engineering, Xi 'an University of Architecture and Technology, Xi 'an 710055, China
2 Department of Automation Engineering, Wuxi Higher Vocational and Technical School of Mechanical and Electrical Engineering, Wuxi

214028, China
* Corresponding author email: 1732900847@qq.com

Abstract: To solve the sparse reward problem of job‐shop scheduling by deep reinforcement

learning, a deep reinforcement learning framework considering sparse reward problem is

proposed. The job shop scheduling problem is transformed into Markov decision process, and

six state features are designed to improve the state feature representation by using two‐way

scheduling method, including four state features that distinguish the optimal action and two

state features that are related to the learning goal. An extended variant of graph isomorphic

network GIN++ is used to encode disjunction graphs to improve the performance and

generalization ability of the model. Through iterative greedy algorithm, random strategy is

generated as the initial strategy, and the action with the maximum information gain is selected

to expand it to optimize the exploration ability of Actor‐Critic algorithm. Through validation of

the trained policy model on multiple public test data sets and comparison with other advanced

DRL methods and scheduling rules, the proposed method reduces the minimum average gap by

3.49%, 5.31% and 4.16%, respectively, compared with the priority rule‐based method, and 5.34%

compared with the learning‐based method. 11.97% and 5.02%, effectively improving the

accuracy of DRL to solve the approximate solution of JSSP minimum completion time.

Keywords: job shop scheduling problems; deep reinforcement learning; state characteristics;

policy network

Citation: Anjiang Cai, Yangfan Yu and Manman Zhao. "Deep Reinforcement Learning Solves Job-Shop Scheduling Problems."

Instrumentation 11, no. 1 (March 2024). https://doi.org/10.15878/j.instr.202300165

0 Introduction
The Job shop scheduling problem (JSSP) is a popular

NP-hard combinatorial optimization problem that can
simulate real-world scheduling problems in
manufacturing, planning, and engineering. More and
more researchers tend to develop approximate methods to
obtain satisfactory solutions, which are mainly divided
into: meta-heuristic method, heuristic method based on
priority rule and learning method[1,2]. With the increase of
production scale and operation complexity, it has become
very important to study effective scheduling technology
to improve production efficiency, and more scholars have
begun to study learning-based methods to solve such
problems. WANG et al.[3] adopted the DRL learning

strategy model to solve JSSP. In the proposed method,
PPO[4] was adopted to find the optimal scheduling
strategy. Compared with the traditional scheduling
method, the proposed method could realize adaptive and
real-time production scheduling, and the expression of
state features may not be perfect, resulting in multiple
optimal solutions for the candidate action set. ZHANG et
al.[5] combined graph neural network (GNN)[6] and PPO
to solve JSSP by learning the PDR of the task A policy
model of the same size can solve problems of more size
types through model generalization. Due to the sparse
reward problem, the agent needs to explore a large
number of state Spaces to find the state features that
obtain rewards, and it is easy to fall into local optimality,
which ultimately limits the accuracy of the policy model

Copyright: © 2024 by the authors.

This article is licensed under a

Creative Commons Attribution 4.0

International License (CC BY) license

(https://creativecommons.org/license

s/by/4.0/).

INSTRUMENTATION, Vol. 11, No. 1, March 2024 89

to solve the approximate solution of JSSP. At present,
there are few researches on solving sparse reward
problem in JSSP by deep reinforcement learning. YUAN
et al.[7] proposed a utilization scheduling rule that
maximizes the cumulative rewards of all agents through
Boltzmann utilization to avoid local optimality caused by
sparse rewards. LEI et al.[8] proposed an end-to-end
hierarchical reinforcement learning framework for
large-scale flexible job shop scheduling problems. They
designed a high-level agent for resscheduling and two
low-level agents for job assignment and machine
selection, and solved the sparse reward problem by means
of multilevel controllers, achieving good results. However,
the subtask division of hierarchical reinforcement
learning requires a lot of knowledge and experience, and
needs to design multiple strategies and learning processes,
resulting in high algorithm complexity.

The problems in solving JSSP by using deep
reinforcement learning are as follows: (1) The
construction of state features is not perfect, and the
relationship between state features and learning
objectives is not established, which makes the learning
time of agents longer and reduces the decision-making
efficiency of agents; (2) The deficiency of policy model
construction affects the ability of policy network to
explore the optimal solution, limits the decision-making
ability of agents, and affects the generalization ability of
policy model and the ability to solve JSSP; (3) Lack of
research on the sparse reward problem makes the agent
need to explore a large number of potentially invalid
states to find those states that can obtain rewards, and the
agent is easy to fall into the local optimal solution or
completely unable to learn.

In order to better apply the learning method to JSSP,
a deep reinforcement learning framework is proposed to
solve the sparse reward problem and improve the
accuracy of solving the approximate solution of JSSP. In
this paper, GIN++ is adopted to embed the node coding.
By introducing an adjacency matrix regularization
mechanism, the network can map the model to a specific
space. The performance and generalization ability of the
model are improved. The bidirectional scheduling method
is used to design 6 state features to improve the state
feature representation, including 4 state features to
distinguish the optimal action and 2 state features related
to the learning goal. Taking the quality difference between
the predicted completion time and the theoretical
completion time as the reward design, the state feature
representation proposed in this paper not only satisfies the
distinction of state features, but also realizes the
connection with the learning goal, which is conducive to
the decision-making of the policy network, but also
compensates the agent's ability to explore the state space
to obtain rewards, and avoids the agent falling into the
local optimal or unable to learn problem. In the face of
complex combinatory optimization problems, Actor-
Critic algorithm will be affected by local optimal
solutions and gradient instability, etc. In each iteration of
Actor-Critic algorithm improved by IG algorithm, IG can

use greedy algorithm to construct new policy parameters,
that is, the optimal action based on the current strategy.
Doing so helps the Actor-Critic algorithm explore the
search space more efficiently and find better strategies.
Through continuous iterative improvement, the search
ability of Actor-Critic algorithm is improved to obtain
better strategy performance. A feasible method for job
shop production scheduling is proposed.

1 Problem Description
Standard JSSP can be described as: Scheduling

n job Ji={J1, J2, ..., Jn} to be processed on K machine
Mk={M1, M2, ..., Mk}. Each job has an operation, each job
has m operations Oi,j={Oi,1, Oi,2,...,Oi,m} processed in a
certain order, irepresents the job index of the operation, j
represents the machine index of the operation. The
processing time of each operation on the machine is Ti,j,k,
the start time of operation processing is ,

s
i jt , and the end

time of operation processing is ,
e
i jt . The optimization

objective of this paper is to minimize the completion time,
and the assumptions and constraints are as follows:

1.1 Basic Assumptions
(1) Capacity constraint: Each machine can handle at

most one operation at the same time.
(2) Non-preemptive: Each machine can only process

one operation before processing the next operation.
(3) The machine will not fail when processing the

job operation.
(4) In the process of job processing, the preparation

and transportation time between operations is ignored.

1.2 Mathematical Model
1.2.1 Objective function

Optimization goal: minimum completion time.

 }{maxmin ,
1
1

e
ji

mj
ni

tT
≤≤
≤≤

 (1)

1.2.2 Decision variables






others 0,

Mon processed is ,1 k ,
,,

ji
kji

O
x (2)








jihg

jihg
jihg OO

OO
Y

 , ,

 , ,
,,, after processed is ,1

 before processed is ,1
 (3)

1.2.3 Constraints
1) Each operation can only be processed on one

machine. kjiX
Kk kji , , ,1 , ,  

 (4)
2) The start time of each operation on the machine is

greater than or equal to zero.
 , , , , , 0, , , e

i j i j k i j kt T X i j k （ ） ≥ (5)
3) Constraints on the sequence of operations.
 , 1 , , , , , 0, , , e e

i j i j k i j i j kt T t X i j k   （ ） ≥ (6)
4) Only one operation can be performed on each

90 CAI Anjiang et al: Deep reinforcement learning solves job-shop scheduling problems

machine.

, , , , , , . . , , , , , ,

, , , , , , . . , , , , , ,

() (1)1 0,
2 () (1)

(,), (,),

e e
g h i j g h k g h k i j k g h i j g h i j

e e
i j g h g h k g h k i j k g h i j g h i j

t t T X X Y Y

t t T X X Y Y

i j g h k

    
 
     



≥
 (7)

5) The processing time of the operation on the
machine is greater than zero.

 , , , ,
e s

i j k i j i jT t t  (8)
 k j, i,0 T＜ (9)
6) The initial processing time of the operation on the

machine, where , ,
e
g h kt represents the completion time of

the previous operation on the same machine.
 } ,max{ ,1-,,

e
hg

e
ji

s
ji ttt  (10)

7) Machine processing completion time.
 kji

s
ji

e
k TtT ,,,  (11)

8) Machine processing operation time.

kjiTT
mj
ni

j
i

kjik , ,,
1
1

,, 






 (12)

9) Job processing time.

kjiTT
Kk
mj

k
j

kjii , ,∀,
1
1

,,∑






 (13)

JSSP is expressed as disjunctive graph[9] and
modeled as topological structure of state and action, as
shown in Fig.1(a) represents a 3×3 JSSP instance. The
black arrows are connected arcs, indicating the priority
relationship between adjacent operations of the same job.
Dotted lines of the same color indicate operations
processed on the same machine. Fig.1(b) is a complete
solution that determines the disjunction arc direction for

Fig.1 Disjunctive diagram representation

each machine. The set ,{ | , } { , }i jO O i j S T ＝ represents
each operation node in the disjunctive graph, and S and T
represent the start and end of job processing respectively,
which are all virtual values.

2 Construct the DRL Framework
for Solving JSSP

The JSSP is described by disjunction graph, the state
features are embedded by GIN++ network, and the optimal
strategy model is trained by PPO algorithm under
Actor-Critic framework. The overall deep reinforcement
learning framework for solving JSSP is shown in Fig.2.

Fig.2 General framework for solving JSSP

2.1 MDP Definition for the Job Shop
The JSSP problem is modeled as a Markov decision

model (MDP). The standard MDP consists of (S, a, R, γ,
P) five parts, which represent state, action, reward,
discount factor and state transition probability in turn.
2.1.1 Status

State feature design should not only distinguish
states, but also relate to learning goals. The selection of
state features should take into account their impact on the
realization of the goal. The selection of state features
related to the goal can provide a more informative and
effective representation, so as to help the agent better
understand the environment, make decisions and optimize
strategies. According to the state of the disjunctive graph
in the solution, 6 state features are designed:

1) , ()i j tI s : Denotes the scheduling status of node Oi, j
in the disjunctive graph when state st time is obtained,
which is 0 when the node is not scheduled and 1 when it is
scheduled.

INSTRUMENTATION, Vol. 11, No. 1, March 2024 91

2) , ()e
i j tt s : Represents the estimated completion

time of Oi, j.
 jit

s
jit

e
ji Tstst ,,,)()( (14)

Where , ()s
i j tt s represents the estimated start time of

Oi, j at state st, recursively, and if Oi, j represents the first
operation of the job, it represents the time for the machine
to complete the other operations of the job.

3) ()
kM tt s : When the state is st, the completion time

of the remaining operation on the machine after the
machine Mk completes the operation Oi, j is calculated as
follows:

ksTst

mj
ni

ji
tkjitM k





,)()(
,

,,

 (15)

Where i and jindicate the indexes of the scheduled

operations. If Oi, j is from the set of unscheduled
operations, it represents the maximum estimated
completion time of all unscheduled operations on the
same machine, calculated using two-way scheduling. If it
is not from the candidate operation set, the value is 0.

4) ()
iJ tt s : Represents the completion time of the

remaining operations in Ji after the completion of Oi,j in
state st. The formula is as follows:

, ,

,
() (),

i

j m
k K

J t i j k t
j k

t s T s i




 

(16)

j and k indicate the indexes of the scheduled
operations. If Oi,j comes from the set of unscheduled
operations, it represents the total completion time of all
unscheduled operations in the same job, which is
calculated using two-way scheduling.If it is not from the
candidate operation set, the value is 0.

5) ()
kM tT s : Represents the maximum value of the

actual completion time of Mk exceeding the estimated
completion time when the state is st. The calculation
formula is as follows:

 () max{ () () ()}
k k

e
M t k t M t k tT s t s t s T s   (16)

When Oi, j is completed on the machine, the
completion time of the operation is the same as the
completion time of the machine, i.e. ,() ()e e

k t i j tt s t s＝ , where
() ()

k

e
k t M tt s t s＋ represents the estimated completion time of

the machine Mk at state st, and ()k tT s represents the
continuous completion time of all operations on the
machine, i.e., the sum of all operation times on the
machine Mk.

6) ()
iJ tT s : Represents the maximum value of the

actual completion time of Ji exceeding the estimated
completion time when the state st is applied. The formula
is as follows:

)}()()(max{)(, titJt
e

jitJ sTststsT
ii

 (17)

Where , () ()
i

e
i j t J tt s t s＋ represents the estimated

completion time of job Ji at state st, and the last item
()

iJ tT s represents the continuous completion time of job

Ji, which is the sum of all operation times in job Ji.
According to the definition of the state features of

disjunctive graph nodes, the feature vector of disjunctive
graph nodes is constructed, and the state feature
information of unscheduled nodes is aggregated by
bidirectional scheduling. As shown in Fig.3, the
scheduling along the direction of node S to T is forward
scheduling, and the scheduling along the direction of node
T to S is reverse scheduling. In Fig.3, when the state is s1,
the scheduled node is O3,1 and the candidate scheduling
set is {O1, 1, O1, 2, O1, 3}. As shown in Fig.4(a), the state
feature 5 of O1,1 when the state is s1 is M1, M2, M3 and the
final completion time exceeds the maximum value of the

Fig.3 State transition process

92 CAI Anjiang et al: Deep reinforcement learning solves job-shop scheduling problems

Fig.4 Reverse scheduling Gantt chart of operations at state s1

continuous processing time, that is, max{16–5–2–3,
19–3–5–3, 11–7–4}=8. State feature 6 is J1, J2, J3 The
final completion time exceeds the maximum value of the
continuous processing time part, that is, max{19–4–15,
19–9, 14–8}=6, so the state feature vector of O1,1 at state
s1 is O1,1={0, 3, 12, 9, 8, 6}. Similarly, as shown in
Fig.4(b), when O1,2 is in state s1, state feature 5 is
max{14–2–5–3, 18–3–3–5, 11–4–7}=7, state feature 6 is
max{15–15, 18–7–9, 8–8}=2, and the state feature vector
of O2,1is O2,1=[0, 3, 12, 9, 8, 6] when it is in state s1.
Similarly, as shown in Fig.4(c), the state feature 5 of O3,2
in state s1 is max{14–2–5–3, 23–5–3–3, 11–4–7}=12, the
state feature 6 is max{15–15, 18–7–9, 23–8}=15, and the
state feature vector of O3,2 in state s1 is O3,2=[0, 5, 3, 3, 12,
15]. In state s1, where O1,1 and O2,1 state features 1, 2 are
the same, it is impossible to distinguish the optimal
solution, and the design of state features 3, 4 complements
the deficiency of state feature representation.However,
state features 1 to 4 only satisfy the distinction state, and
state 3 of O1,1 and O2,1 is different, which has no obvious
connection with the minimum completion time goal of
DRL, leading to the sparse reward problem. A smaller
value of state feature 5 indicates a shorter waiting time for
the machine to process, and a smaller value of state
feature 6 indicates a shorter waiting time for the job
operation to be processed in the buffer. Therefore, the
smaller the value of status feature 5 and 6, the earlier the

completion time of the job, that is, the higher the priority
of the job operation. Therefore, operation O2,1 is selected
when the status s2 is used. State features 5 and 6 provide
more efficient states and obtain more cumulative rewards,
making up for the sparse reward problem caused by
insufficient correlation between DRL state features design
and learning objectives.
2.1.2 Movements

The number of candidate job sets is |J|, and each job
provides at most one operation during the decision step to
construct the action space At, and the size of the action
space At does not exceed |J| and becomes smaller with the
decision process.
2.1.3 Status Change

The state transition depends on the environment, and
the generation of a new state is equivalent to updating the
disjunctive arc direction in the disjunctive graph. When
the priority of a job operation in a certain state is
determined, the operation to be scheduled is scheduled on
the machine according to the earliest available time of the
machine, and the disjuncting arc direction on the machine
is updated. As shown in Fig.3, after the agent completes
an action, the environment simulator updates the state
from st to st+1 and generates the corresponding disjunction
diagram in the new state.
2.1.4 Reward

With the goal of minimizing the completion time, the
processing order of each job operation on the machine is
gradually arranged according to the priority of the job
operation. The reward function R(st, at) is the difference
between the pairs of two states st and st+1. Formula (18),
where , , 1 , , max ()e e

i j t i j i j kt s t T  calculates the completion
time of Ji at state st recursively. The discount factor is γ=1,
the cumulative reward is R, and the formula is (19), where
Ti(s0) is the constant representing the theoretical
completion time of the job, and s|O|–2 represents the set of
node states except for {S, T} nodes. The calculation of R
is related to the representation of state feature 6, and the
reward in this paper is calculated using state feature 6.

 ,

, 1 1

(,) max{ () ()}

 max{ () ()}
i

i

e
t t i j t J t

e
i j t J t

R s a t s t s

t s t s 

  


 (18)

| | 3

0

0 , | | 2

(,)

 max () max ()

O
t tt

e
i i j O

R R s a

T s t s







 



 (19)

The disjunctive graph in the constructed MDP
presents the priority constraints of the job operations, the
processing sequence of the job operations on the
corresponding machine, and the time of the machine to
process each pending job operation, which reflects the
scheduling state of the JSSP, the disjunctive graph structure,
and the job data. Therefore, it is very important to extract
all the state information contained in the disjunction graph
and use it to complete effective scheduling.

2.2 Disjunctive Graph Coding
Therefore, an extended variant of graph isomorphic

INSTRUMENTATION, Vol. 11, No. 1, March 2024 93

network (GIN)[10], GIN++, is used to encode disjoint
graphs, which can map models into specific Spaces by
introducing an adjacency matrix regularization
mechanism, thereby improving model performance and
generalization ability. According to the definition of
disjunctive graph, each node of disjunctive graph is
encoded by several layers of GIN++ to achieve the
embedding of state features. Compared with GIN, GIN++
superimposes the new feature vector of the current node
with the previous feature vector to obtain the final feature
representation of the current node GIN++ does l iterative
updates on each node, computes p-dimensional
embeddings, and the update at iteration l is expressed as:

() () (1)

(1) 1
()

((1)

)
l

l l l l
v v

l l
u va N v

h MLP h

h h
  

 


  


 (20)

Where ()
l

lMLP is a multi-layer perceptron (MLP)
with parameter θl for iterating l and then normalizing, ε is
a learnable arbitrary parameter, N(v) is a neighborhood of
v, l

vh is a representation of node v when iterating l, and
0
vh represents the original feature of the input. After l

iterations of updating, a global representation of the entire
graph can be obtained using the pooling function L, which
takes the embeddings of all nodes as input and outputs the
p-dimensional vector p

Gh R , with average pooling.

2.3 Optimization of Policy Network
MLP is used to construct a deep neural network for

state representation and strategy learning. The strategy
network actor-critic in this paper consists of two parts, in
which the Actor network is used to output the probability
distribution of the action; The Critic network is used to
output estimates of action values. In order to improve the
exploration ability and learning efficiency of the strategy
network, Iterated Greedy Algorithm (IG)[11,12] is adopted
to optimize the Actor-Critic algorithm. The specific steps
are as follows:

1) Initialize the policy: Use the IG algorithm to
select the random policy from the policy space as the
initial policy.

2) Actor-Critic policy update: Initial policy parameters
are used to update the Actor-Critic algorithm through the
gradient rise method to optimize the policy network and
improve the current policy.

3) IG generates new policy parameters: IG algorithm
is used to calculate information entropy, select actions
with maximum information gain for expansion, and find
the optimal policy parameters.

4) Evaluate new policy parameters: Test the newly
generated policy parameters in the environment and
calculate its performance in the environment.

5) Update the policy and value function: According
to the evaluation results, use the Actor-Critic algorithm to
update the policy and value function. The parameters of
policy network and value function network are optimized
to approximate better policy and value function.

6) Iterative update: Repeat steps 3-5 to continuously

improve and search for better strategies through multiple
iterations. In each iteration, IG generates new policy
parameters, which are evaluated and updated by
Actor-Critic.

3 Experimental Verification
According to the number of jobs and machines in the

training set data, policy models of different sizes are
trained, including 10×10, 10×15, 10×20, 15×10, 15×15,
20×10, 20×15, 20×20, 30×10, 30×10, 30×15, 30×20.
DUM example and LA example were used to evaluate the
policy model.

3.1 Experimental Data and Evaluation Indicators
3.1.1 Data Set

Experimental data includes training, validation, and
test datasets. The training data set and the experimental
data set are combined, and the common benchmark
instance is the test data set. The operation processing time
range is {1, 90} or {1, 199}, and the number of random
seeds is 200.
3.1.2 Evaluation Indicators

In terms of performance evaluation, the relative
deviation percentage (RPD)[13] is used as a metric, also
known as the optimality gap. Literature [5], [14] and[15]
also adopted RPD index as the main evaluation index:

*

max max
*

max

100%T TRPD
T


＝ (21)

Where *
maxT represents the optimal solution or

approximate optimal solution obtained by an exact
method, and Tmax represents the optimal solution obtained
by an approximate method.

3.2 Parameter Settings
Program in Windows 11 64bit computer (CPU:

AMD Ryzen 5 5600 6-Core Processor 3.50 GHz,GPU:
NVIDIA GTX 1080Ti 16GB memory), based on
Python3.10.9, Pytorch2.0.1 environment.

The learning rate lr of PPO training algorithm is
2×10–5, the clipping parameter ε is 0.2, the discount factor γ
is 1, the critical loss coefficient Cv is 1, the strategy loss
coefficient Cp is 2, and the entropy loss coefficient Ce is 0.01.

3.3 Validity Verification
3.3.1 Impact of Introducing IG Algorithm

The improved policy model was compared with the
policy model in literature [5] to verify the effectiveness of
the introduced IG algorithm. As shown in Fig.5(a) and (b),
the training results of the two policy models on the 20×15,
{1, 99} and 20×15, {1, 199} data sets are shown. After
the introduction of IG algorithm, the learning effect of the
strategy model is not good at the initial training stage, but
its exploration ability is enhanced and it rapidly converges
with the increase of training times. Moreover, the learning

94 CAI Anjiang et al: Deep reinforcement learning solves job-shop scheduling problems

effect reaches the best when the iteration is about 5 times,
and the learning effect reaches the best and tends to be
stable when the iteration is about 25 times. When facing
complex combinatorial optimization problems, the
Actor-Critic algorithm adopted in [5] will be affected by
problems such as local optimal solution and gradient
instability. In this paper, IG improves Actor-Critic
algorithm. In each iteration, IG can use greedy algorithm
to construct new policy parameters, that is, the optimal
action based on the current strategy. This will help
Actor-Critic algorithm to explore more efficiently in the
search space and find better strategies. Through
continuous iterative improvement, the search ability of
Actor-Critic algorithm is improved to obtain better
strategy performance. At the same time, the learning
speed has been significantly improved, and the problem
of poor solving effect of policy network caused by sparse
rewards has been improved, and the decision-making
ability of policy model has been effectively improved.
3.3.2 Design the Influence of State Features
Related to Learning Objectives

The state feature representation proposed in this
paper is compared with the feature representation not
related to learning objectives and the state feature

representation in literature [5] to verify the validity of the
new state feature representation proposed. As shown in
Fig.6(a) and (b), when the state feature representation
does not design the state feature related to the learning
goal, the training effect of the policy model is
significantly improved on the 30x20, {1,99} data set, but
not on the 30x20, {1,199} data set. Therefore, when the
state feature representation does not design the state
feature related to the learning goal, the solution effect of
the strategy model is not significantly improved, and the
improvement effect is not stable. The state feature
representation method of [5] only satisfies the distinction
of different state features, and does not further design
state features related to learning objectives. The state
feature representation proposed in this paper not only
satisfies the distinction of state features, but also designs
two state features related to learning goals on this basis,
which makes up for the agent's ability to continue
exploring state space to obtain rewards, and avoids the
agent falling into local optimal or unable to learn
problems. This paper provides a more informative and
effective representation by selecting a state feature
representation method related to the goal, which helps
agents better understand the environment and make
decisions and optimize strategies.

Fig.5 Training effect of optimized strategy model on different data sets
(a)The strategy model is trained on the 20×15, {1, 99} data set

(b)The strategy model is trained on the 20×15, {1, 199} data set

Fig.6 Validity of the new state feature representation
(a) The effect of solving the new state feature on a 30x20, {1,99} data set

(b) The effect of solving the new state feature on a 30x20, {1,199} data set

INSTRUMENTATION, Vol. 11, No. 1, March 2024 95

3.4 Generalization of Policy Model

Table 1, Table 2 and Table 3 show the generalization
ability of policy models of different sizes on TA, DMU
and LA test sets under different training data sets and
different data set sizes. As shown in Table 1, the 15×15
and 20×15 policy models are suitable for solving medium
and small size test datasets (15×15, 20×15, 20×20, 30×15),
while the 20×20, 30×15 and 30×20 policy models are
more suitable for medium and large size test datasets
(30×20, 50×15, 30×15). 50×20, 100×20). As shown in
Table 2, the policy model with the size of 20×15 has
the strongest solving ability and generalization ability for

instances in DMU data sets, while the policy model with
the size of 30×20 has stronger solving ability for 40×20
DMU data sets than the policy model with other sizes. As
shown in Table 3, policy models with sizes 10×10, 15×15,
20×15, and 20×20 have better solving power and
generalization ability. To sum up, the solving ability and
generalization ability of policy models with different sizes
are affected by the size of the training data set. The data
scale of the training data set in this paper is certain, and
different policy models cannot achieve the best effect on
each test instance. In Table 1, Table 2 and Table 3, 15×15,
{1, 99}, 20×15, {1, 99} and 20×15, {1,199} with small
data sets have better generalization ability.

Table 1 Average optimality deviation value and average time on TA test set

n×m
15×15, {1, 99} 20×15, {1, 99} 20×20, {1, 99} 30×15, {1, 99} 30×20, {1, 99}

Gap Time(s) Gap Time(s) Gap Time(s) Gap Time(s) Gap Time(s)
15×15 17.36% 0.83 19.11% 0.81 19.01% 0.68 18.65% 0.70 19.64% 0.69
20×15 23.14% 1.17 20.00% 1.21 20.65% 1.06 24.03% 1.06 20.88% 1.02
20×20 19.56% 1.57 18.93% 1.63 19.03% 1.57 21.56% 1.50 19.25% 1.57
30×15 19.72% 1.94 21.92% 1.78 21.73% 1.81 23.72% 1.83 20.81% 1.71
30×20 23.78% 2.58 23.40% 2.84 24.21% 2.41 23.54% 2.61 22.57% 2.80
50×15 15.05% 3.12 14.89% 3.67 15.13% 3.60 15.04% 3.52 13.82% 3.83
50×20 15.72% 5.06 16.16% 5.18 15.44% 4.73 17.01% 4.85 16.28% 5.49

100×20 7.62% 18.21 7.11% 17.14 7.05% 17.18 6.90% 18.83 6.94% 18.04
Average Gap 17.74% 4.31 17.69% 4.28 17.78% 4.13 18.81% 4.36 17.52% 4.39

Table 2 Average optimality deviation value and average time on DMU test set

n×m
20×15, {1, 199} 20×20, {1, 199} 30×15, {1, 199} 30×20, {1, 199}

Gap Time(s) Gap Time(s) Gap Time(s) Gap Time(s)
20×15 24.40% 1.13 25.00% 1.02 26.21% 1.08 26.04% 1.10
20×20 23.44% 1.47 24.29% 1.54 24.27% 1.53 23.57% 1.47
30×15 29.63% 1.75 31.12% 1.71 31.87% 1.70 30.51% 1.70
30×20 28.45% 2.46 30.59% 2.91 28.95% 2.60 29.07% 2.44
40×15 25.30% 2.54 26.95% 2.50 26.55% 2.65 25.98% 2.59
40×20 29.24% 3.56 30.66% 3.70 30.63% 3.83 28.70% 3.65
50×15 24.88% 3.53 27.60% 3.50 25.92% 3.47 25.30% 3.40
50×20 27.32% 5.35 30.93% 5.25 30.07% 5.91 27.98% 5.08

Average Gap 26.58% 2.72 28.39% 2.76 28.06% 2.84 27.14 2.67

Table 3 Average optimality deviation value and average time on LA test set

n×m
10×10, {1, 99} 15×15, {1, 99} 20×15, {1, 99} 20×20, {1, 99} 30×15, {1, 99} 30×20, {1, 99}
Gap Time(s) Gap Time(s) Gap Time(s) Gap Time(s) Gap Time(s) Gap Time(s)

10×5 12.77% 0.18 14.54% 0.19 12.55% 0.19 11.26% 0.18 21.30% 0.19 12.00% 0.20
15×5 3.70% 0.25 3.88% 0.26 1.97% 0.26 3.03% 0.26 13.38% 0.28 2.19% 0.27
20×5 2.99% 0.35 4.36% 0.38 3.96% 0.38 3.96% 0.34 5.17% 0.38 3.55% 0.38

10×10 12.95% 0.34 16.88% 0.33 10.89% 0.34 13.10% 0.35 19.92% 0.36 12.87% 0.36
15×10 13.94% 0.52 17.15% 0.55 13.31% 0.52 13.21% 0.57 18.23% 0.57 14.11% 0.54
20×10 18.56% 0.74 14.86% 0.72 16.17% 0.83 16.91% 0.84 19.16% 0.82 16.85% 0.84
30×10 3.39% 1.44 4.25% 1.51 5.15% 1.55 4.62% 1.60 7.13% 1.59 3.73% 1.53
15×15 15.05% 0.89 14.38% 0.92 17.39% 0.85 15.53% 0.88 18.59% 0.93 16.25% 0.90

Average Gap 10.42% 0.58 11.29% 0.60 10.17% 0.61 10.20% 0.62 15.36% 0.64 10.19% 0.62

96 CAI Anjiang et al: Deep reinforcement learning solves job-shop scheduling problems

3.5 Comparison of Approximate Solution Accuracy
The baseline comparisons were SPT, FIFO, MWKR,

[5], [14] and [16]. [5] GNN is used to embed the node
code in the disjunction graph in fixed dimension, predict
the state representation and reward calculation of the
minimum completion time, and use Actor network to
explore the state space and generate strategies and output
actions.[14] GNN was used to learn node features
embedded in JSSP spatial structure, and scheduling
policies were derived to map embedded node features to
scheduling actions. Node state changes were used as state
features and reward calculations, and Actor networks
were used to explore and generate strategies for state
space and output actions.[16] A DRL framework called
DGERD Transformer is proposed, which integrates

disjunctive graph embeddings and attention mechanisms
in DNN to solve JSSP based on attention mechanism and
disjunctive graph embeddings. Priority constraints of job
operations are used as state representations. Minimize the
inverse of the maximum completion time as a reward
setting.

As shown in Table 4, the average solving gap of the
strategy model trained by the proposed method is superior
to other methods, increasing by 3.49% compared with the
minimum average gap based on priority rules and 5.34%
compared with the minimum average gap based on
learning methods. As shown in Fig.7, among the 80
groups of data in TA test data set, the results of this paper
are superior to those of other control groups in 69 groups,
and the optimal results account for 86.25%. Most current

Table 4 Comparison of TA test set results

n×m SPT FIFO MWKR [5] [14] [16] Ours

15×15 25.88% 23.11% 21.19% 25.96% 20.13% 35.38% 17.36%

20×15 32.81% 30.02% 22.84% 30.03% 24.95% 32.09% 20.00%

20×20 27.75% 27.67% 23.98% 31.61% 29.25% 28.33% 18.93%

30×15 35.27% 30.22% 23.96% 33.00% 24.70% 36.43% 19.72%

30×20 34.44% 30.90% 25.68% 33.62% 32.00% 34.67% 22.57%

50×15 24.10% 20.11% 17.79% 22.38% 15.92% 31.86% 13.82%

50×20 25.53% 23.18% 18.41% 26.51% 21.29% 28.04% 15.44%

100×20 14.40% 12.75% 8.81% 13.61% 9.24% 17.89% 6.90%

Average Gap 27.52% 24.74% 20.33% 27.09% 22.18% 30.59% 16.84%

Fig.7 Comparison of TA instance test sets

INSTRUMENTATION, Vol. 11, No. 1, March 2024 97

learning-based methods use TA test sets to evaluate the
performance of their strategy models, which also proves
the effectiveness of the proposed methods. As shown in
Table 5, the average solving gap of the strategy model
trained by the proposed method is superior to other methods,
which is 5.31% higher than the minimum average gap
based on priority rules and 11.97% higher than the
minimum average gap based on learning methods. As
shown in Fig.8, among the 80 groups of data in the DMU
test data set, our results were superior to those of other
control groups in 74 groups, and the optimal results
accounted for 92.50%. As shown in Table 6, the strategy
model trained by the proposed method is better than other

methods in solving the average gap, which is 4.16% higher
than the minimum average gap based on priority rules and
5.02% higher than the minimum average gap based on
learning methods. Literature [14] has better generalization
ability on 15x5 and 20x5. As shown in Fig.9, among the 40
groups of data in the LA test data set, the results of this
paper are superior to those of other control groups in 29
groups, and the optimal results account for 72.50%. In
general, the average RPD value of the solution results of
DMU data set is 26.51%, which is the largest compared
with the average RPD value of the solution results of TA
and LA data sets, possibly because the processing time
range of each operation in DMU data set is larger.

Table 5 Comparison of DMU test set results

m×n SPT FIFO MWKR [5] Ours

20×15 64.13% 37.18% 30.49% 38.95% 24.40%

20×20 64.56% 32.43% 26.35% 37.74% 23.44%

30×15 62.56% 39.29% 34.79% 41.86% 29.63%

30×20 65.91% 36.57% 32.18% 39.48% 28.45%

40×15 55.87% 35.08% 31.16% 35.38% 25.30%

40×20 63.00% 39.72% 33.24% 39.38% 28.70%

50×15 50.37% 34.74% 31.04% 36.20% 24.88%

50×20 62.19% 41.38% 35.34% 38.86% 27.32%

Average Gap 61.07% 37.04% 31.82% 38.48% 26.51%

Fig.8 Comparison of DMU test data sets

98 CAI Anjiang et al: Deep reinforcement learning solves job-shop scheduling problems

Compared with the GNN node coding
embeddings adopted in [5] and [14], this network can
map the model to a specific space by introducing an
adjacency matrix regularization mechanism, thus
improving the performance and generalization ability
of the model. Taking the quality difference between the
predicted completion time and the theoretical
completion time as the state representation and reward
design, the state feature representation methods [5], [14]
and [16] can only satisfy the distinction of different
state features. On this basis, the state feature
representation proposed in this paper can realize the
connection with the learning goal and is conducive to
the decision-making of the policy network. At the same
time, it makes up for the agent's ability to explore the

state space and get rewards, so as to avoid the agent
falling into local optimal or unable to learn. In the face
of complex combinatory optimization problems,
Actor-Critic algorithm will be affected by local optimal
solutions and gradient instability, etc. In each iteration
of Actor-Critic algorithm improved by IG algorithm,
IG can use greedy algorithm to construct new policy
parameters, that is, the optimal action based on the
current strategy. Doing so helps the Actor-Critic
algorithm explore the search space more efficiently and
find better strategies. Through continuous iterative
improvement, the search ability of Actor-Critic
algorithm is improved to obtain better strategy
performance. But[16] it takes less time to solve
large-scale problems.

Table 6 Comparison of LA test set results

n×m SPT FIFO MWKR [14] Ours

10×5 14.80% 17.95% 16.49% 16.06% 11.26%

15×5 14.86% 9.57% 5.79% 1.08% 1.97%

20×5 13.71% 7.96% 4.88% 2.12% 2.99%

10×10 15.67% 25.32% 14.82% 17.05% 10.89%

15×10 28.68% 29.40% 19.81% 21.96% 13.21%

20×10 33.43% 24.45% 20.88% 27.25% 14.86%

30×10 13.88% 11.16% 7.79% 6.27% 3.39%

15×15 24.58% 25.29% 15.83% 21.40% 14.38%

Average Gap 19.95% 18.88% 13.28% 14.14% 9.12%

Fig.9 Comparison of LA test data sets

INSTRUMENTATION, Vol. 11, No. 1, March 2024 99

4 Conclusion

① Six state features are designed, including four state
features that distinguish the optimal action in the candidate
set, and two state features that are related to the learning
goal to improve the sparse reward problem, making it
easier for the agent to capture effective state information,
better understand the environment, and improve the
learning effect and stability of the policy network.

② By introducing IG algorithm to optimize
Actor-Critic algorithm, IG algorithm is used to calculate
information entropy, select actions with maximum
information gain for expansion, and find the optimal
policy parameters to optimize policy parameters, which
effectively promotes the exploration ability of policy
networks and improves the solution of sparse reward
problem of policy networks.

③ The generalization ability of the policy model is
verified on the TA, DMU and LA test sets, where the
results of the optimal approximate solution account for
86.25%, 92.50% and 72.50%, respectively, which proves
the effectiveness of the improved policy model to solve
the minimum completion time of job-shop scheduling.

④ The ability of the strategy model to solve the
approximate solution of the minimum completion time
was verified on the TA, DMU and LA test sets. The results
showed that the minimum average gap was increased by
3.49%, 5.31% and 4.16%, respectively, and the decibel
was increased by 5.34%, 11.97% and 5.02%, respectively,
compared with the minimum average gap based on the
priority rule method. The accuracy of the approximate
solution of the minimum completion time of job-shop
scheduling is effectively improved.

Author Contributions:
Yangfan YU: Writing – original draft, Software,

Conceptualization, Validation, Visualization.Anjiang CAI:
Supervision, Funding acquisition, Writing – review &
editing. Manman ZHAO: Writing – review & editing,
Formal analysis.

Funding Information:
Shaanxi Provincial Key Research and Development

Project (2023YBGY095) and Shaanxi Provincial Qin
Chuangyuan "Scientist + Engineer" project (2023KXJ247)
Fund support.

Data Availability:
The authors declare that the main data supporting the

findings of this study are available within the paper and its
Supplementary Information files.

Conflict of Interest:
The authors declare no competing interests.

Dates:
Received 17 July 2023; Accepted 17 December 2023;

Published online 31 March 2024

References
[1] Chupeng Su, Cong Zhang, Dan Xia, et al.Evolution

strategies-based optimized graph reinforcement learning for
solving dynamic job shop scheduling problem[J]. Applied Soft
Computing, 2023, 145. DOI:10.1016/j.asoc.2023. 110596.

[2] Kun Lei, Peng Guo, Wenchao Zhao, et al.A multi-action deep
reinforcement learning framework for flexible Job-shop
scheduling problem[J]. Expert Systems with Applications,
2022, 205.DOI:10.1016/j.eswa.2022.117796.

[3] Wang L, Hu X, Wang Y, et al. Dynamic Job-shop Scheduling
in Smart Manufacturing using Deep Reinforcement
Learning[J]. Computer Networks, 2021, 190(2):107969.
DOI:10.1016/j.comnet.2021.107969.

[4] Schulman J, Wolski F, Dhariwal P,et al.Proximal Policy
Optimization Algorithms[J]. 2017. DOI: 10.48550/arXiv.
1707.06347.

[5] Zhang C, Song W, Cao Z, et al. Learning to Dispatch for Job
Shop Scheduling via Deep Reinforcement Learning.
2020.DOI:10.48550/arXiv.2010.12367.

[6] Hamilton W, Ying Z, Leskovec J. Inductive representation
learning on large graphs[J]. Advances in neural information
processing systems, 2017, 30.

[7] Minghai Yuan, Hanyu Huang, Zichen Li,et al.Amulti-agent
double Deep-Q-network based on state machine and event
stream for flexible job shop scheduling problem[J].Advanced
Engineering Informatics. 2023, 58:102230. DOI: 10.1016/
j.aei.2023.102230.

[8] Lei K, Guo P, Zhao W, et al. A multi-action deep
reinforcement learning framework for flexibleJob-shop
scheduling problem[J]. Expert Syst. Appl. 2022, 205:117796.
DOI:10.1016/j.eswa.2022.117796.

[9] Jacek Błażewicz, Pesch E, Sterna M. The disjunctive graph
machine representation of the job shop scheduling problem[J].
European Journal of Operational Research, 2000, 127(2):
317-331. DOI:10.1016/S0377-2217(99)00486-5.

[10] Xu K, Hu W, Leskovec J, et al. How Powerful are Graph Neural
Networks?[J]. 2018. DOI: 10.48550/arXiv. 1810.00826.

[11] Ying K C, Lin S W, Cheng C Y, et al. Iterated reference
greedy algorithm for solving distributed no-idle permutation
flowshop scheduling problems[J].Computers & Industrial
Engineering, 2017, 110(aug.): 413-423. DOI:10.1016/
j.cie.2017.06.025.

[12] Y.-Z. L, Q.-K. P, He X, et al. The distributed flowshop
scheduling problem with delivery dates and cumulative
payoffs[J]. Computers & Industrial Engineering, 2022(165-):165.

[13] Zixiao Pan, Ling Wang, Jingjing Wang, JiawenLu, Deep

100 CAI Anjiang et al: Deep reinforcement learning solves job-shop scheduling problems

reinforcement learning based optimization algorithm for
permutation flow-shop scheduling[J], IEEE Trans. Emerg.
Top.Comput. Intell. 2021.

[14] Park J, Chun J, Kim S H, et al. Learning to schedule job-shop
problems: representation and policy learning using graph
neural network and reinforcement learning[J]. International
Journal of Production Research, 2021(4):1-18. DOI:10.1080/
00207543.2020.1870013.

[15] Hameed M S A, Schwung A. Graph neural networks-based
scheduler for production planning problems using reinforcement
learning[J]. Journal of Manufacturing Systems, 2023.

[16] Ruiqi Chen, Wenxin Li, Hongbing Yang, A deep
reinforcement learning framework based on an attention
mechanism and disjunctive graph embedding for the job-shop
scheduling problem[J], IEEE Trans. Ind. Inform. 2022,19 (2) :
1322-1331.

