
INSTRUMENTATION, Vol. 9, No. 2, June 2022  13 
 
 
 
 
 

Evaluating the Effect of Various Walking Conditions 
on KINECT-based Gait Recognition 

LIU Ruixuan1, Marina L. GAVRILOVA2* 

(1. Renmin University of China, Beijing 100872, China; 

2. Biometric Technologies Laboratory, University of Calgary, Canada) 

Abstract: Human gait is one of the unobtrusive behavioral biometrics that has been extensively studied for 
various commercial and government applications. Biometric security, medical rehabilitation, virtual reality, and 

autonomous driving cars are some of the fields of study that rely on accurate gait recognition. While majority of 

studies have been focused on achieving very high recognition performance on a specific dataset, different issues 

arise in the real-world applications of this technology. This research is one of the first to evaluate the effects of 

changing walking speeds and directions on gait recognition rates under various walking conditions. Dataset was 

collected using the KINECT sensor. To draw an overall conclusion about the effects of walking speed and di-

rection to the sensor, we define distance features and angle features. Furthermore, we propose two feature fusion 

methods for person recognition. Results of the study provide insights into how walking speeds and walking di-

rections to the KINECT sensor influence the accuracy of gait recognition. 
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1  Introduction 

Human gait is one of unobtrusive behavioral 
biometrics that has been extensively studied for 
various commercial and government applications. 
Biometric security, medical rehabilitation, virtual 
reality, autonomous driving cars are some of the fields 
of study that rely on accurate gait recognition. Gait is a 
type of an unobtrusive biometric that is very effective 
in recognize a person from a distance. Based on human 
anatomy, every person’s gait is different from another 
based on their body size, the length of the bone 
structure and preferred walking style [10]. Thus, gait is a 
highly distinctive feature which makes it suitable for 
human recognition at the distance. It can be captured 
naturally without individual’s collaboration or 
awareness. Another advantage of gait as a biometric is 

that it is difficult to hide or imitate someone’s gait, so it 
can be effectively used as an identity solution in 
commercial surveillance systems. While the majority 
of studies has been focused on achieving very high 
recognition performance on a fixed dataset, different 
issues arise in the real-world applications of this 
technology [4, 16]. Our work is one of the first to evaluate 
the effects of changing walking speed and directions on 
gait recognition rates under various conditions. 
KINECT sensor v2 was used to obtain gait samples. In 
order to draw an overall conclusion about the effects of 
walking speed and direction toward the sensor, we 
define distance features, angle features and consider 
two feature fusion methods. Results of the study 
provide insights on how walking speed and walking 
direction in respect to the KINECT sensor influence 
the accuracy of gait recognition. The paper is 
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structured as follows. Section 2 presents a brief 
literature review of gait recognition methods. Section 3 
introduces a complete Kinect based gait recognition 
workflow. In section 4, experimental results and 
analysis of the Kinect gait recognition system under 
different scenarios are discussed. Section 5 concludes 
this paper with a discussion of obtained results and 
future work. 

2  Literature Review 

In the past, gait recognition mostly relied on video 
cameras to capture the movement of a person [11, 14]. But 
this kind of data collection requires significant 
preprocessing efforts as well as extensive storage 
capacity. After Microsoft Kinect was first introduced 
as a peripheral of Xbox 360 gaming console, collecting, 
storing and processing of gait data was significantly 
simplified. Kinect can provide the data stream of 
walking movement when an SDK is used to extract 
human body joint data during gait cycle.  

Kinect is a low-cost consumer-based depth sensor, 
that is sensitive to noise and effect of data sampling 
environment. Thus, some external factors may easily 
influence the performance of gait recognition based on 
Kinect [12]. For example, if someone walks in an uneven 
speed, coordinates of human skeleton joints may not be 
captured accurately by the device. Also, if someone 
does not follow exact same trajectory, the walking 
pattern may be different even for the same person [8]. 
Both situations will have effects on the feature 
extraction and gait recognition accuracy. Thus, it is 
very important to study how walking speed and 
direction influence gait recognition performance in 
order to gain an insight on what environmental factors 
should be considered when deploying a gait 
recognition system in real life. 

Recently, a lot of attention is given to 
incorporating deep learning paradigms in the gait 
recognition. Both Convolution Neural Networks and 
Graph Based Neural Network architectures has been 
explored [5, 15, 17]. For example, authors of [17] proposed 
KinectGaitNet to model  the 3D input representation 
with convolutional neural network. It can achieve a 

high accuracy and shorter inference latency via the 
unique 3D input representation of joint coordinates. 
However, even this research rarely addresses varied 
speed and research direction effect on the overall 
recognition rates.  

The contributions of this research are as follows. 
In order to evaluate the effects of different speeds and 
directions in each step of gait recognition, we 
developed a fully functioning gait recognition system 
utilizing score-level and rank-level fusion methods. 
During the gait cycle detection, we adopted and 
modified three distance parameters, that are commonly 
used in gait recognition studies based on Kinect. These 
modified parameters were proven to be highly efficient 
for gait recognition task. During feature extraction, we 
defined both distance features and angle features, as we 
postulated that the speed and directions of the walk 
affects length and angle features differently. During 
model training and classification period, we performed 
two types of distance measurements, corresponding to 
distance features and angle features, using K-nearest 
neighbor as the classification method. Finally, we 
compared the obtained recognition rate and statistical 
parameters corresponding to the walking conditions. 
We compared gait recognition performance under 
different walking speeds and directions. To the best of 
our knowledge, this is the first in-depth study on how 
walking direction and speed directly affect Kinect gait 
recognition accuracy.  

3  Methodology 

The gait recognition method proposed in this 
paper follows the gait recognition five-steps model, 
customized with proposed gait features and 
information fusion methods. After obtaining the data 
stream from the Kinect version 2, which contains 
coordinates of 25 joints in three directions, we 
pre-process the data with data filtering method, based on 
local regression with weighted linear least squares [7]. 
Next, the sequence of processed data is divided into 
several complete gait cycles. After that, static features 
and dynamic features are extracted from the 
processed data for further matching. Finally, the 
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K-Nearest Neighbor classification method [7] is used 
to classify the testing samples and calculate the final 
recognition rate.  

As the goal of the paper is to evaluate the effects 
of walking speeds and directions on the performance of 
gait recognition, a thorough comparison of results 
under different conditions was performed. Also, 
different methods during each stage of the gait cycle 
are compared under all the conditions in order to find 
out which kind of method is suitable for a specific 
condition. 

To be more specific, the three types of walking 
speeds are defined as slow, normal and fast. In addition, 
six types of walking directions are considered: forward, 
backward, zigzag, zigzag-parallel, parallel and round. 
The normal speed and the forward direction are set to 
be the correct speed and direction in control groups 
when a comparison is made. 

3.1  Data Collection 

Kinect can capture RGB images, depth images of 
a scene and skeleton data streams in real time. However, 
the proposed method only uses skeleton data stream 
from Kinect v2 to construct the dataset. Three 
sequences corresponding to the data captured under 
eight scenarios with frame rate fixed at 30 frames per 
second (fps). In total, the dataset contains 168 
sequences (24 sequences for each person). Skeleton 
joints considered demonstrated in Table 1. All 
scenarios of different speed or direction conditions for 
each person are listed in Table 2. The scenario 1-3 of 
this table are designed to evaluate the effect of speed 
conditions with the direction fixed as forward. In the 
same way, the scenarios 3-8 of this table correspond to 
the evaluation of walking direction with speed fixed as 
normal. For each repeated dataset collected for the 

same subject, the ground truth of how many steps the 
subject takes was recorded in a TXT file with one row 
and 8 columns corresponding to eight scenarios. 

3.2  Pre-processing 

3.2.1  Proper Distance between the Kinect and the 
Subject 

Because the accuracy of Kinect capturing joint 
positions may be reduced when a subject is farther 
from the sensor, a proper distance between the Kinect 
and the subject should be considered. We compare the 
height of a person calculated from the joint coordinates 
with the ground truth height recorded separately. For 
the ith frame of a sequence, Da,bi acts as the distance 
between the two joints Ja and Jb. The joints are defined 
in Table 1. Then the height in the ith frame can be 
computed as:  

Hi = D1,2
i + D2,3

i + D3,4
i +max (D5,7

i+ 
            D7,10

i, D6,8
i+D8,11

i) (1) 
 
As shown in Fig.1, a suitable distance for gait 

collection using Kinect is 1.5m-4.2m. Therefore, the 
data out of this range is not considered in our 
experiments. 
3.2.2  Data Smoothing 

The weighted local regression method is applied 
to smooth the data [7]. The regression weights for each 
data point in the span are calculated as shown below. 
Here, x acts as the predictor of the original value, while 
xi represents the closest neighbor of x within the span. 
Then, the distance between x and the most distant 
predictor value within the span is defined as d(x). 
Finally, we can get the smoothed value with less noise 
data after weighted regression:                        𝑤 = ൬1 − ቚ௫ି௫ௗ(௫)ቚଷ൰ଷ

  (2) 

 
Table 1  Skeleton Joints Considered 

Joint Name Head neck Spine 
Shoulder 

Spine 
Base 

Hip 
Left 

Hip 
Right

Knee
Left 

Knee 
Right 

Ankle 
Left 

Ankle 
Right 

Joint Number J1 J2 J3 J4 J5 J6 J7 J8 J10 J11 
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Table 2  Scenarios of Data Collection 

Condition 
Scenario 

Speed Direction 

Slow Fast Normal Forward Backward Zigzag Zigzag-p Parallel Round

1 √   √      

2  √  √      

3   √ √      

4   √  √     

5   √   √    

6   √    √   

7   √     √  

8   √      √ 

 
 

 
 

Fig.1  Proper Distance Range between the Kinetic Sensor and the Subject 

 
3.3  Gait Cycle Detection 

Gait cycle detection is an important part of any 
gait recognition research as a complete gait cycle 

provides enough information to extract salient features. 
Mainly there are three kinds of variables defined in the 
classical machine-learning based gait recognition 
research.  
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A method of detecting foot-off and foot contact 
with knee angle for gait cycle separation was 
proposed in 2017 [2]. In 2014, Chattopadhyay and his 
colleagues [6] proposed the absolute depth difference in 
limbs as the absolute separation between the left and 
right limbs along the Z axis of the Kinect coordinate 
system. Another way to detect gait cycle is explained in 
[1] with the distance of right ankle and left ankle to 
detect a complete gait cycle. In this section, we discuss 
these three existing methods and propose a modified 
method based on the work by [2]. 

1) Knee angle: The knee angle is calculated from 
the coordinates of the right hip, right knee and right 
ankle (Fig.2) according to [2]:  

            Dଵ =  ಼ಹሱ⎯ሮ∙ ಼ಲሱ⎯ሮ|಼ಹሱ⎯ሮ|∙ |಼ಲሱ⎯ሮ|   (3) 

 

 
 

Fig.2  Knee Angle as Parameter to Detect 
 
2) Absolute depth distance in limbs: The 

definition is of the summation of relative distance 
between the left and right limbs in the Z-axis 
direction of the Kinect coordinate system. In this 
equation, zra and zla represent the depth values of 
coordinates of right ankle and left ankle in Z-axis, 
and zrw and zlw show the depth values of 
coordinates of right wrist and left wrist in Z-axis 
accordingly. Afterwards the D2 is calculated by 
summing the two distances up:             𝐷ଶ = |Z௪ − Z௪| + |Z − Z|  (4) 

It can be noticed in Fig.3 (a, b) that D2 is as periodic 
as pattern of walking cycle in normal cases. However, in 
round and other parallel scenarios, this cyclical period is 
not stable enough for gait cycle detection. 

3) Distance between ankles: This distance is 
calculated as the distance between the left ankle and 
the right ankle: 𝐷ଷ =         ඥ(𝑋 − 𝑋)ଶ + (𝑌 − 𝑋)ଶ + (𝑍 − 𝑍)ଶ      (5) 

We introduce a new method based on absolute 
depth difference in limbs. This method is calculating 
the distance in 3-dimension axis instead of in only 
Z-axis, as shown in Formula 6. The Xlw denotes the 
coordinate of left wrist in X-axis. This improved 
method is named as Improved Absolute Distance 
(IAD). Fig.3(c) shows that this method has a more 
stable cyclical period than the original one, compared 
to Fig.3(b). This helps to increase the accuracy of gait 
cycle detection. Dସ = ට(𝑋௪ − 𝑋௪)ଶ + (𝑌௪ − 𝑋௪)ଶ + (𝑍௪ − 𝑍௪)ଶ +ඥ(𝑋 − 𝑋)ଶ + (𝑌 − 𝑋)ଶ + (𝑍 − 𝑍)ଶ  (6) 

In order to keep the condition as only variance 
during our evaluation, we choose the same cycle 
detection method in all feature extraction work. After 
that, we chose three minima to identify a complete gait 
cycle. This way there are several gait cycles in the 
same data sequence. 

3.4  Extraction of Biometric Features                  

Body features extracted from Kinect are usually 
divided into static features and dynamic features. In 
this proposed method, the characteristics of static and 
dynamic features are combined, so the features are 
mainly divided into distance features and angle 
features, as shown in Fig.4.  
3.4.1  Distance Features  

Distance features consist of two kinds of features 
and their variances: length features and relative 
features. Both distance features are calculated with 
Euclidean Method. Formula 7 depicts this computation 
with n denoting 28 features. The distance feature F is 
defined by Formula 8. Here, Fl represents ten length 
features. Flv refers to ten variances of each length 
feature. Fr is defined as the four relative features. Frv 
acts as the four variances of each relative feature. In 
Fig.4, blue lines show ten length features and red lines 
show four relative distance features. 
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Fig.3  Parameters for Gait Cycle Detection 
 
 
 
 

 
 

Fig.4  Distance Features and Angle Features 
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        d(p, q) =  ඥ∑ (𝑝 − 𝑞)ଶୀଵ   (7) 

            F =  ሼ𝐹, 𝐹௩, 𝐹, 𝐹௩ሽ      (8)             𝐹 = (𝑙ଵ, 𝑙ଶ, 𝑙ଷ, 𝑙ସ, 𝑙ହ, 𝑙, 𝑙, 𝑙଼, 𝑙ଽ, 𝑙ଵ)  (9)     𝐹௩ = (𝑙𝑣ଵ, 𝑙𝑣ଶ, 𝑙𝑣ଷ, 𝑙𝑣ସ, 𝑙𝑣ହ, 𝑙𝑣, 𝑙𝑣, 𝑙𝑣଼, 𝑙𝑣ଽ, 𝑙𝑣ଵ)  (10)                                𝐹 = (𝑟ଵ, 𝑟ଶ, 𝑟ଷ, 𝑟ସ)     (11) 

          𝐹௩ = (𝑟𝑣ଵ, 𝑟𝑣ଶ, 𝑟𝑣ଷ, 𝑟𝑣ସ)  (12) 

3.4.2  Angle Features 
The angle features are defined as the angles 

formed by the corresponding two joints with respect 
to a reference point Spine. Based on results of 
research of [1], twenty relative joint-pairs angles are 
most distinctive, and thus they are chosen as shown in 
Table 3. 

 
Table 3  Angle Features 

Number Joint 1 Joint 2 

1 HipRight WristLeft 

2 HipRight HandLeft 

3 HipRight HandTipLeft 

4 HipRight ThumbLeft 

5 HipLeft WristRight 

6 HipLeft HandRight 

7 HipLeft HandTipRight 

8 HipLeft ThumbRight 

9 ThumbRight WristLeft 

10 ThumbRight HandLeft 

11 ThumbRight HandTipLeft 

12 ThumbRight ThumbLeft 

13 ThumbLeft WristRight 

14 ThumbLeft HandRight 

15 ThumbLeft HandTipRight 

16 WristRight WristLeft 

17 WristRight HandLeft 

18 WristRight HandTipLeft 

19 HandRight HandLeft 

20 HandLeft AnkleLeft 

3.4.3  Feature Fusion 
The fusion methods are highly useful during 

matching stage. The score-based method in Fig.5 
demonstrates how the final fusion score is calculated 
from the different kinds of DTW features. As for 
distance features, the score is calculated with the 
Euclidean distance between an observation of 28- 
dimensional distance features in training set and testing 
set. The score for each angle feature is calculated with 
Dynamic Time Warping [9]. This is well-known 
non-linear sequence alignment method, which is 
originally proposed in [13] for speaking signal 
alignment. It is used to measure the dissimilarity 
between two given gait samples without any 
intermediate resampling stage for the same length gait 
sequences. After obtaining two scores of distance 
features and angle features, one generally cannot 
directly combine these scores in a statistically 
meaningful way because these scores have different 
ranges and distributions. Therefore, it is necessary to 
transform them to be comparable before fusion. In 
this proposed method, we utilize a linear 
normalization method for scaling all the distances 
between 0 and 1. 

        Nomalized(𝑥) =  ௫ି୫୧୬ ()୫ୟ୶()ି୫୧୬ ()  (13)  

Rank-based fusion is a way to make a final 
decision by the overall rank, which is summed by 
several sorting results of distances between 
observations in training set and testing set as 
mentioned above. This is similar to a majority voting 
scheme in which the final prediction of an observation 
is assigned to the class most common among its k 
nearest neighbors (as shown in Fig.6). 

3.5  Classification 

In this study, the k-nearest neighbor method is 
applied to accomplish the classification process. The 
distance measurement is Euclidean Distance for 
classification based on the distance features, where 
Dynamic Time Warping is used to measure the 
dissimilarity in recognition based on angle features. 
The values of features are standardized by centering 
and scaling with column mean and standard deviation.  
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Fig.5  System Architecture with Score-level Fusion 

 

 
 

Fig.6  System Architecture with Rank-level Fusion 
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This is demonstrated by Formula 14, where x acts as 
the original value, 𝜇 represent the mean value of each 
column and 𝜎 is the standard deviation: 

          Standardized(x) =   ௫ିఓఙ   (14) 

When using the KNN classifier, the accuracy 
varies with the value of k. If the data is noisy, the 
accuracy of KNN classifier will diminish when k is 
small. However, some studies showed that [3, 8] the 
performance of gait recognition is best when k is equal 
to 1. Thus, in the comparison of recognition rates at 
different speeds or in various directions, 1-NN is 
performed.  

4  Experimental Results 

In this section, we present our evaluation results. 
Experimental scenarios and area with variant 
directions are shown in Fig.7 and Fig.8. 

4.1  Recognition Rate 

In order to obtain results with training set and 
testing set in different scenarios, the cross-validation 
was performed. The training set is the randomly 
selected 80% of the whole dataset. The remaining 20 % 
is considered as a testing set. The recognition rate is 
computed as the percentage of correct predicted 
observations in the testing set. Table 4 and Table 5 
display the recognition rates in different speeds and 

 

 
 

Fig.7  Experimental Scenarios 
 

 
 

Fig.8  Experimental Area with Variant 
Walking Directions 

 

 

 
Table 4  Recognition Rates at Different Speed 

Test 
Train 

Slow Fast Normal 

d a f a d f d a f 

Slow 97.3 97.3 93.7 85.7 50.0 75.7 100 52.6 93.6 

Fast 67.6 18.9 74.1 100 92.9 98.7 100 52.6 89.3 

Normal 91.9 64.9 89.2 85.7 71.4 94.6 100 100 85.7 

All Speed 94.6 89.2 96.8 100 92.9 96.0 100 100 97.9 
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Table 5  Recognition Rates with Different Walking Directions 

Test 
Train 

Forward Backward Zigzag Zigzag-p Parallel Round 

d a f d a f d a f d a f d a f d a f 

Forward 100 100 95.7 38.9 27.8 57.6 78.1 51.2 68.8 28.3 26.4 41.4 33.3 25.0 36.5 33.3 14.3 42.3

Backward 52.6 15.8 47.3 94.4 94.4 93.5 61.0 29.3 54.0 20.8 11.3 29.1 16.7 16.7 27.0 19.1 14.3 23.7

Zigzag 94.7 68.4 77.4 66.7 5.6 63.0 87.8 70.7 96.6 32.1 17.0 40.5 25.0 16.7 46.0 42.9 14.3 38.1

Zigzag-p 68.4 15.8 54.8 38.9 11.1 60.9 53.7 17.1 55.7 81.1 41.5 87.7 41.7 8.3 49.2 57.1 14.3 57.8

Parallel 52.6 26.3 50.5 50.0 27.8 44.6 43.9 12.2 45.5 47.2 26.4 48.5 75.0 25.0 88.9 61.9 14.3 68.0

Round 42.1 15.8 45.2 33.3 16.7 48.9 36.6 16.7 40.3 47.2 24.5 50.2 58.3 25.0 54.0 90.5 23.8 93.8

All 
Directions 100 94.7 93.6 100 100 76.1 92.7 65.9 97.2 100 100 60.4 75.0 16.7 84.1 100 85.7 82.5

 
 

directions separately with three different features. 
These features are distance features, angle features and 
feature fusion. The recognition rates in normal 
scenarios are above 85.7%. This shows that the 
features proposed in this paper are effective for gait 
identification. 

To examine the recognition in variable-speed 
scenario, the model was trained with three different 
speeds, as shown in Table 4. When recognition happens 
in variable-direction scenario in Table 5, we can 
observe that varied directions have much more effects 
than varied walking  speed. Also, the recognition rate 
is very low when only angle features are considered. 
Another interesting observation is that the feature 
fusion does not impact too much variable-direction 
scenario. So training the model with more data 
containing different directions is recommended to 
enhance system recognition. 

4.2  Evaluating Effects 

4.2.1  Gait Cycle Detection 
The performances of cycle detection are measured 

by the accuracy of the number of steps. The results are 
compared among these three methods: knee angle 

detection, angle distance detection and the improved 
method with accuracy of the number of steps. The 
experiments show that the fast speed will significantly 
reduce the accuracy of gait cycle detection, while the 
slow speed helps to get an accurate gait detection. 
When the other suffer from lower detection capability, 
the proposed method results in a higher detective 
power, especially in normal, parallel and round 
scenarios. 
4.2.2  Comparison of Features and Variance  

The effects of different conditions are evaluated 
with the mean values and variances of 14 distance 
features (1-10 correspond to 10 length features and 
11-14 indicate 4 relative features). Angle feature are not 
included in this experiments, due to the fact that the 
mean values and variances of them are not that significant 
for gait recognition, as previously discovered. 

The summary of observations from experiments 
can be found in Fig.9. The slower the subject walks, the 
smaller his relative distance features are. This 
observation tells us that if the applied environment is 
speed variable, the relative distance features should not 
be considered in extraction as it may cause distinction 
even if the two observations are from the same subject. 
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Fig.9  Comparison of Means and Variance under Different Walking Conditions. 

 
The value of the 7th feature (distance between the 

joint-pair of HipRight and KneeRight) in the backward 
scenario is smaller than it is in normal scenario, while 
values in other kinds of scenarios are higher. As for the 
8th feature (distance between KneeRight and 
AnkleRight), the values are higher in the three types of 
parallel scenarios (ZigzagP, Parallel, Round). That 
shows that the direction has a significant impact on 
some lower limbs features. The reason for this is that 
when walking sideways, even if we use the side that is 
not hidden, the overlapping of two legs will make the 

features unstable. Therefore, the features of lower body 
are not reliable enough for the gait recognition system 
with variable walking scenarios. 

All abnormal directions cause smaller relative 
distance features, especially the three sideways 
directions. This is also caused by the occlusion of the 
part of the body.  

The slow speed will produce a steadier data due to 
the fact that the variance in the slow scenario is lower. 
The experimentation further shows that all abnormal 
directions will cause more noisy data than the normal 
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direction, especially in three sideways directions. 

4.3  Improvement of Recognition Rate 

There are several reasons which may influence 
the recognition rate under different conditions. The 
following section will illustrate how these factors 
influence the recognition performance. 
4.3.1  Selection of Features 

After comparing the recognition rate with 
different selections of features in Table 6, we can find 
that the performance is improved by adding relative 
distances and their variances. Also, the recognition rate 
of zigzag, slow, and normal scenarios are higher when 
variances of distances are considered. However, if the 
subject walks at a fast speed, the variances should not 
be included in the distance features as it will reduce the 
recognition accuracy. Furthermore, the more angle 
features will lead to a more accurate gait recognition. 

 

Table 6  Feature Selection 

Number of Distance Features Feature Selection 

8 Fr, Frv 

14 Fl, Fr 

20 Fl, Flv 

28 Fl, Flv ,Fr, Frv 
 

4.3.2  Feature Fusion 
Additionally, the effects of the feature fusion 

methods: score-based fusion and rank-based fusion, are 
compared. In most cases except for normal and zigzag, 
the recognition rate of score-based fusion is much 
better than rank-based fusion with 10%-20%. In the 
normal scenario, the difference is only 2.5%. So a 
conclusion can be drawn that the score-based fusion 
method should be applied in real life for a better 
performance in various walking scenarios. 

5  Conclusions and Future Work 

This paper extracts three kinds of features to 
realize gait recognition, as well as conducts one of the 
first studies to evaluate the effect of different speed and 
walking direction conditions on the gait recognition 
performance. The results of this study can play an 

active role in improving the robustness of gait 
recognition systems under different conditions. 

Based on the observations, the best choice for the 
most accurate gait recognition would be detecting gait 
cycle with the improved method in forward direction at 
a normal or slow speed. We observed that varied speed 
has a less significant effect on the performance of 
recognition than the walking direction. We also 
observed that the overall gait recognition rate will be 
improved with the more data available and with the 
training under diverse scenarios. 

Comparing various walking directions, we 
observe that the sideways walking direction have the 
most impact on the gait recognition. On the one hand, 
many factors that affect the Kinect data collection can 
be avoided by placing the Kinect in such a way that 
subjects walk directly towards the Kinect sensor. On 
the other hand, the recognition in various walking 
directions is still implementable with choosing a 
proper gait cycle detection method and extracting 
suitable features as mentioned in this proposed method. 

Future work entails a few different avenues for 
investigation. Study of other factors that may influence 
the performance of gait recognition, including clothing, 
accessories, changes in trajectories and walking 
surfaces can be conducted. The effects of speed and 
direction conditions on other classification methods 
may be studied. Finally, we observed that some 
directions have a significant impact on the recognition 
rate. Based on this, improvement to gait recognition 
methods for such specific scenarios can be explored in 
the future work.  
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