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Abstract: Brain-computer interfaces (BCI) based on steady-state visual evoked potentials (SSVEP) have at-
tracted great interest because of their higher signal-to-noise ratio, less training, and faster information transfer.
However, the existing signal recognition methods for SSVEP do not fully pay attention to the important role of
signal phase characteristics in the recognition process. Therefore, an improved method based on extended Ca-
nonical Correlation Analysis (¢CCA) is proposed. The phase parameters are added from the stimulus paradigm
encoded by joint frequency phase modulation to the reference signal constructed from the training data of the
subjects to achieve phase constraints on eCCA, thereby improving the recognition performance of the eCCA
method for SSVEP signals, and transmit the collected signals to the robotic arm system to achieve control of
the robotic arm. In order to verify the effectiveness and advantages of the proposed method, this paper eva-
luated the method using SSVEP signals from 35 subjects. The research shows that the proposed algorithm im-
proves the average recognition rate of SSVEP signals to 82.76%, and the information transmission rate to
116.18 bits/min, which is superior to TRCA and traditional eCAA-based methods in terms of information
transmission speed and accuracy, and has better stability.
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1 Introduction

The principle of Brain Computer Interface (BCI)
is to create a communication and control channel be-
tween the brain and the external environment, enabl-
ing direct signal interaction between the brain and

731 Existing computer-based BCI

external devices
systems acquire, analyze, and convert EEG signals
into output signals for control of external devices. The
BCI system consists of three main components: (1)
acquisition signal, i.e., the acquisition of EEG signals

from the user; (2) signal processing, i.e., the extrac-

tion and classification of EEG signal features accord-
ing to the user's intention; and (3) output signal, i.e.,
the system sends control signals to make external de-
vices perform a series of actions according to the us-
er’s intention.

Many studies have shown that Steady-State Vis-
ual Evoked Potential (SSVEP) is a stable electroen-
cephalographic oscillation evoked by periodic stimuli
of high frequency, i.e., a significant SSVEP signal can
be detected in the occipital region of the cerebral cortex
when subjects are subjected to visual stimuli that flick-
er periodically at a certain frequency. The EEG signal
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of SSVEP has a frequency component which like the
stimulus frequency and its higher harmonic compo-
nents’® %, Therefore, the spectral peaks at the stimulus
frequencies or harmonics can be seen in the EEG signal
after power spectroscopy, and the frequency compo-
nents corresponding to the spectral peaks can be ana-
lyzed to know the components of the stimulus source
that the subject is looking at, and thus the intention of
the activity that the subject wants to express.

The interference of some spontaneous brain ac-
tivities when detecting EEG signals is inevitable. Ef-
fective feature extraction of EEG signals is not only
the key to accurately identify the frequency of SSVEP
in a short time, but also the key to further develop
high-performance brain computer interfaces based on
SSVEP. Typical correlation analysis (CCA) is a com-
monly used method for signal identification!’ .
Therefore, Lin et al” firstly applied CCA to signal
feature extraction of SSVEP-BCI system, analyzed the
relationship between multichannel SSVEP EEG signals
and reference signals, and calculated the maximum
correlation coefficient between them. Compared with
the traditional power spectral density analysis method,
the CCA-based method can significantly improve the
frequency identification performance. Chen et al'”
introduced extended typical correlation analysis (eCAA)
to combine CCA coefficients with Pearson correlation
coefficients of test and training data. Mohammand et
al'"! proposed a new CCA-based approach which im-
proves the performance of BCI systems by using sub-
ject-specific and subject-independent training methods.
In addition, task-related component analysis (TRCA)
has been one of the most popular methods for SSVEP
identification in recent years. Therefore, Nakanishi M
et al'"” introduced the TRCA method into SSVEP to
improve the signal-to-noise ratio and suppress sponta-
neous EEG activity by maximizing the recurrence be-
tween multiple tasks.

The extended CCA and TRCA methods have
significant advantages in classification accuracy, short
time windows, and ITR!"®!. Therefore, in the second
section of this article, a constraint recognition algo-
rithm based on the relationship between eCCA and the
reference signal is proposed. This algorithm adds the

stimulus paradigm design parameters of SSVEP to the
reference signal, and in the third section, the collected
EEG signal is transmitted to the robot arm system to
control the robot arm to execute specified com-
mands!*!. In order to verify the effectiveness of the
proposed method, a comparative study was conducted
in the fourth section between the TRCA algorithm and
the traditional eCCA algorithm based on publicly
available EEG data from Tsinghua University.

2 Method

2.1 The eCCA

The principle of the CCA algorithm is to first
analyze the relationship between multi-channel
SSVEP EEG signals and reference signals of each
stimulus frequency, and then infer the maximum cor-
relation coefficient between them, in order to obtain
the corresponding output control instructions for the
stimulus target and SSVEP signals. It is an unsuper-
vised method that does not use any pre obtained data
to train the system. Numerous studies'™ have found
that incorporating subject training data into SSVEP
signal recognition methods can more effectively cap-
ture the temporal characteristics of SSVEP responses
and improve the performance of CCA based methods.
Three types of multi-channel information can be ob-
tained through the training data of the subjects !'%:
(1) Test datax;

(2) The template signal X, obtained from the

average of the training data of the kTH subject;

(3) Sine and cosine reference signal ¥, .

By calculating the CCA between each pair of the
three types of multi-channel information mentioned
above, 6 spatial filters can be generated, resulting in
10 typical variables!'”). Then, a total of 45 correlation
features between two typical variables are calculated,
and 36 of the effective correlation features can be
used for SSVEP signal recognition.

Chen et al''”! proposed an eCCA method by
combining the Pearson correlation coefficients of
CCA and subject training data: by selecting 5 correla-

tion features r,(i), i=1, 2, 3, 4, 5, between test data
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X and template signal X . » the feature set with the

best signal recognition performance is constructed:
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Where p(a, b) represents the relevant features of
a and b, and W,(4B) represents the spatial filter be-
tween two multi-channel information A and B calcu-
lated by CCA. Use the weighted sum of squares of
these five related features as the final feature repre-

sentation for signal recognition!*'%;

pe= 2sign( () @

Among them, sign() is used to preserve the dis-
criminative information of the negative correlation

coefficient between the test set X and the training data
template signal X - By confirming the stimulus cor-

responding to the maximum correlation coefficient,
target recognition and classification can be achieved.

Mohammand et al'"! selected 6 correlation fea-
tures 7,.(@), i=1, 2,3, 4,5, 6 out of 36 effective
correlation features to construct the feature set with
the best signal recognition performance:
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Use the sum of these six related features as the

final feature representation for signal recognition:
6
P =2n(0) “)
i=1

2.2 The eCCA-Y

Among the two feature combinations proposed
by Mohammand et al''"! and Chen et al''"! six combi-
nations of correlation coefficients can be obtained.

Considering the final accurate recognition rate and

ITR, we chose four correlation coefficients for the
combination of correlation coefficients in this expe-

riment, and the combination equation is as follows.
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After simplifying and transforming the formula,
the coefficients of the k-th stimulus frequency can be
obtained, calculated as follows, and then classified

using the maximum correlation coefficient.
4
Py = Ysign(n )=, (6)
i=1

Phase information is only reflected in the sub-
ject's EEG signal training data, and there is no phase
information present in the constructed fitting signal.
Therefore, the eCCA-Y algorithm is proposed based
on eCCA, and the phase in the SSVEP stimulus pa-
radigm is added to the reference signal®® 'l and the

constrained reference signal is represented as fol-

lows:
sin2zfi+6,) |
cos(2z f,t+6,)
. N,
Y, , = : ,tzi,ii..,_t @)
Jk Y%k . F; E E
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where Y, g, is the reference signal containing the

phase information 6, of the kth frequency stimulus (if
0, = 0, it is the reference signal of CCA). In a practical
experiment, depending on the experimental intent, the
researcher can design the stimulus paradigm to deter-
mine the magnitude of 8, as follows.

0, =6, +AOX[ (k, ~)x5+(k,-1)] (8
where k, and k, denote the row and column indic-
es of the visual stimulus matrix, respectively, 6, de-
notes the initial phase, and A8 denotes the phase
interval.

For the fundamental component, the signal fitted

by the linear combination of the sine and cosine ref-

erence signal has the same frequency but usually has a
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non-zero phase. EEG signal data are estimated by
maximizing the correlation between the test data and
the reference signal, i.e., the data are too short and
overfitting is likely to occur. A fixed SSVEP response
phase exists for each stimulus frequency, and the
proposed method can be used to constrain the eCCA
to improve the classification performance in frequen-

cy identification.

3 Application Research of Manipulator
Based on SSVEP-BCI Control

3.1 Experiment of Robotic Arm Based on
SSVEP-BCI

The BCI EEG acquisition system communicates
with the robot system through UDP protocol. The
EEG acquisition equipment is responsible for gene-
rating control instructions that the robotic arm can
recognize by converting the recorded EEG signals
through analog-to-digital conversion and online
processing (obtain relevant features and convert them
in real-time through algorithms).

The EEG acquisition system based on SSVEP-BCI
is programmed using the PSYCHTOOLBOX (PTB)

toolbox!*

in MATLAB to form specific stimulus
paradigms for some inherent actions of the robotic
arm. PTB can create stimuli, present stimuli, and
record data as functions. Fig.1 (a) is the final moti-

vational paradigm of the model, which displays the

foward, TTL, TTR, upward, backward, clockwise side rotation,
downward, grab, release, stop

forward TTL upward

counterclockwise clockwise side

) i downward
rotation rotation

backward

release

(a) Mechanical Arm Motion Diagram

images seen by the subjects in order: forward, to-
wards the left, towards the right, and upward; back-
ward, counterclockwise rotation, clockwise side ro-
tation, downward; Grab, release, and stop, Fig.1 (b)
shows their different frequencies and phases under
the stimulus mode.

When collecting EEG data, parallel port inter-
faces are usually used, and Pin2-9 can write data (used
for sending stimulus codes in EEG experiments) with
8 data bits,. In EEG experiments, different frequency
recognition will be marked, and PortTalk's Inpout will
be used to create registers to access possible drivers or
call parallel port pins. MATLAB's data collection
toolbox can automatically read the port address from
the Windows memory protection area containing
BIOS data.

After collecting EEG signals, the BCI system
undergoes real-time processing and connects to con-
trol devices through UDP protocol.

3.2 Experiment of Robotic Arm Based on
SSVEP-BCI

The SSVEP data used was from 35 subjects, 17
female and 18 male, with a mean age of 22 years. 8
individuals have previous experience with SSVEP
experiments and the remaining 27 individuals have no
experience. All subjects are in good health and had
normal (or corrected normal) vision. The experiment

is shown in Fig.2.

0 0.51 n 1.5%
10.25 10.5 10.75 11

0 0.51 n 1.5n
11.25 11.50 11.75 Freq(Hz)

1.5%
0
0.5 Phase(r)
(b) Corresponding Phase

Fig.1 Mechanical Arm Excitation Model
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Fig.2 Subjects Conducting SSVEP Experiments

The EEG acquisition device used in this trial is a
64-channel EEG cap from Neuroscan’s Synamps2 sys-
tem with a sampling rate of 1000 Hz. the electrodes of
the EEG cap are set up according to the international
10-20 system. Nine channels of Pz, PO5, PO3, POz,
PO4, PO6, O1, Oz, and O2 are selected. As shown in
Fig.3, the electrode positions of the parietal lobe were
marked with the letter P, and the electrode positions of
the occipital lobe were marked with the letter O, be-

cause the scalp topography of SSVEP showed high
[23]

activity in the parietal and visual regions

Pz
[
PO5 PO3 POZ PO4 PO6
e® ® o4

02
01 Oz

Fig.3 Electrode Channel Diagram

Five subjects (4 males and 1 female) were se-
lected from a large sample, and a total of five groups
(blocks) were conducted for each subject, with 11
goals in each group. The stimulation frequencies cor-
responding to the positions of the 11 targets on the
screen were 9Hz, 9.25Hz, 9.5Hz, 9.75Hz, 10.25Hz,
and 10.5Hz, 10.75Hz, 11Hz, 11.25Hz, 11.5Hz, and
11.75Hz.

Traverse 11 targets in sequence, with each target
stimulus lasting for 5 seconds (with stimulus prompt
for 0.5 seconds and stimulus flicker for 4.5 seconds).
Each time the target flickers, the subjects try to avoid
blinking. Therefore, after each experiment, in order to
avoid visual fatigue for the subjects, they rest for 2-3
minutes. The experimental arrangement of the test

data is shown in Table 1.

Table 1 Experimental Arrangement of Test Data

0.5s 4.5s 05s 45s 05s ... 0.5s 4.5s
9Hz 9.25Hz 11.75Hz
Triall Trial2 Trialll
55s

Through data preprocessing, 8 signal channels
(Pz, PO3, POz, PO4, PO6, O1, Oz, and O2) were ex-
tracted, and filtered to obtain three-dimensional EEG
data (channels * points * experiments). In order to
enhance the effectiveness of the data, the experimental
group (block) was combined with three-dimensional
EEG data to obtain four-dimensional data (channel *
point * test * block), which was downsampled from
1000Hz to 250Hz. Each experiment consists of
3000 sampling points, which form EEG data of 8 *
750 * 11 * 5.

EEG data recorded through non-invasive devices
can be considered as the sum of real EEG signals and
artifacts, which are independent of each other. In or-
der to remove artifacts from EEG data, the calculated
independent components are first divided into artifi-
cial or neural related components?. If independent
components related to artifacts are detected and
marked, they can be eliminated and the remaining
data remixed. Fig.4 is an independent component
analysis (ICA) diagram after elimination.
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| 3 | 4
{ )
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| 7 | 8

Fig.4 ICA Components after Elimination

Continuous EEG data will be available for 6s per
trial. 1000Hz downsampled to 250Hz. Therefore, each
trial will contain 1500 sampling points, and given the
140ms latency of the visual pathway system, all time
periods will be extracted in intervals [0.14s, 0.14+ds],
this is because the 140ms after SSVEP stimulation is a
transient component, and only subsequently reaches a
steady-state component. However, the phase of the

steady-state component is shifted as the event changes.

Therefore, a bandpass filter (Butterworth filter) of
6Hz-90Hz was used for filtering!*’).

3.3 Simulation of Manipulator Based on
SSVEP-BCI

The EEG acquisition system and robot system
are two important components of SSVEP-BCI 262,
Transform the subject's EEG signals for feature ex-
traction and recognition into controlling the motion of
the robotic arm end effector, enabling the robotic arm
to complete grasping and moving movements.

Before using SSVEP-BCI to control the manipula-
tor, the six degrees of freedom manipulator was simu-
lated and developed on the combined platform of VC9
and OpenGL. OpenGL software control interface is
shown in Fig.5.

Fig.5 OpenGL Software Control Interface

The robotic arm is shown in Fig.6. After trans-
mitting EEG signals to the upper computer, the joints
of the robotic arm begin to perform calibration actions.
By controlling the circuit, various joint angles of the
robotic arm are controlled and the relative position of
each servo mechanism is detected. Define the angle
and action execution time of each servo through the
upper computer to execute the corresponding actions

of the robotic arm.

Fig.6 Physical Image of the Robotic Arm

4 Result

4.1 Performance Comparison of Three Re-
lated Algorithms

Identify the average accuracy and average ITR of
35 subjects, and compare the effectiveness of the three
algorithms under time window lengths of 0.5s, 1s,
1.5s, 2s, and 2.5s, as shown in Fig.7.

In (a) of Fig.7, among the three algorithms
(TRCA, eCCA, and eCCA-Y), the eCCA and eCCA-Y
algorithms have higher average recognition rates than
TRCA for 35 subjects in different time window
lengths. The proposed improved constrained eCCA
algorithm (eCCA-Y) has higher recognition rates than
TRCA and eCCA in most time windows. It can be
seen in (b) that the average ITR of the eCCA-Y algo-
rithm is significantly higher than that of TRCA and
shows a small improvement over the eCAA algorithm
for most of the time window lengths. When TW < 1.5s,
the proposed method outperforms both TRCA and
eCCA methods; however, both show an inflection
point at the time window length of 1.5s, and both
show an increasing trend until 1.5s, and decrease at
the time window length of 2s. Therefore, the time
window length of 1.5s with 375 sampling points is
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considered for this dataset.

For eCCA algorithm, the number of harmonics is
a factor in determining its performance. For TRCA,
the phase information is included in the time domain
average of its trials, so there is no harmonic count
selection. Therefore, this paper only compares the
harmonic components of both eCCA and e¢CCA-Y
algorithms, as shown in Fig.8.

As it can be seen in (a) of Fig.8, the average
recognition rate of 35 subjects tends to a stable value
at harmonic number 2; (b) shows that it rises quickly
to more than 110 bits/min at harmonic number 2,

drops abruptly at harmonic number 3, and subse-

100
90
80
70
60
50

40

Recognition accuracy (%)

TRCA
30 —e—cCCA
20 =+ -eCCA-Y

0 0.5 1.0 1.5 2.0 2.5 3.0

Time window length (s)

(a) Average Recognition Rate for Different Window Lengths

quently tends to a stable state. Therefore, when com-
paring the algorithm performance, the harmonic
number 2 is chosen for SSVEP target identification.
The validation method used in this paper is
Validation (LOOCV)?"),
which aims to estimate the recognition rate and ITR

Leave-One-Out Cross

for each experiment. The number of harmonics is
taken as 2, the number of channels is 9, and the time
window length is 1.5s in the analysis, so the EEG
data of 1.5s is intercepted in the sampling point 1500.
Table 2 compares the recognition accuracy and ITR
of TRCA, eCCA, and the proposed algorithm eC-
CA-Y method.

130
120 -
110 -
100
90 -
80 -
70
60
50 -

ITR (bit/min)

TRCA
40 - —e— eCCA
30 - 4 = eCCA-Y

0 0.5 1.0 1.5 2.0 2.5 3.0
Time window length (s)
(b) Average ITR for Different Window Lengths

Fig.7 Performance of 3 Algorithms with Different Window Lengths

100 ‘ ‘ , ,
90 | |
85 |
80 |
75 |
70 |
65 |
60 |
55|
50

Recognition accuracy (%)

0 1 2 3 4 5 6 7
Number of harmonics

(a) Average Recognition Rate of Different Harmonic Numbers

130 T r : ! : .
110
100 +
90
80
70 -
60 -
50 -
40 L
30

ITR (bit/min)

0 1 2 3 4 5 6 7
Number of harmonics

(b) Average ITR of Different Harmonic Numbers

Fig.8 Algorithm Performance of Different Harmonic Orders
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Table 2 Comparison of Classification Accuracy and ITR of Each Algorithm

Subject Correct Rate (%) ITR (bits/min)
TRCA eCCA eCCA-Y TRCA eCCA eCCA-Y

S1 66.67 73.33 75.42 79.47 92.69 97.01

S2 48.33 50 72.93 48.28 50.89 91.56

S3 98.33 98.75 98.75 154.25 155.4 155.4

S4 87.5 88.33 87.92 123.74 125.94 124.77
S5 73.33 92.08 93.33 92.94 135.5 138.77
S6 73.75 82.5 83.75 93.8 112.88 115.45
S7 70.83 79.17 78.33 87.91 105.25 103.3

S8 85.83 86.67 89.17 119.92 122 127.99
S9 68.33 75 76.25 83.48 96.3 99.12
S10 56.25 71.67 72.5 60.74 89.51 91.08
S11 65.42 82.5 81.67 77.15 112.3 110.49
S12 65.42 86.67 88.33 77.31 122.15 126.63
S13 73.33 85.83 85 93.37 119.94 117.72
S14 98.75 98.33 98.75 155.15 153.64 155.15
S15 67.08 83.75 82.92 80.15 115.74 113.79
S16 48.75 50 52.92 48.99 51.07 55.92
S17 75.83 81.67 81.25 97.14 110.67 109.46
S18 88.33 89.58 89.58 127.97 129.41 129.73
S19 36.25 53.33 53.75 29.39 56.04 56.57
S20 95.42 97.08 96.67 145.73 149.89 149.1

S21 54.58 67.92 93.75 58.22 82.05 140.49
S22 96.25 97.08 97.5 147.24 149.89 151.14
S23 63.75 70 73.75 75.29 86 93.58
S24 85.83 87.92 89.17 120.2 125.76 128.73
S25 95.83 97.92 97.08 145.74 152.99 149.89
S26 89.17 93.75 92.5 128.46 139.85 136.58
S27 75 80.42 82.08 94.91 108.75 111.98
S28 97.08 94.17 94.17 149.64 141.8 141.22
S29 41.25 47.5 47.92 37.65 46.87 47.3

S30 57.08 67.92 70 62.61 82.46 86.98
S31 98.33 98.33 98.33 154.25 153.64 153.64
S32 95 93.75 93.75 143.34 140.67 140.77
S33 27.5 40.83 41.25 18.59 37.01 37.89
S34 92.5 97.5 90 136.74 151.4 130.18
S35 96.67 96.67 96.25 148.14 148.49 146.99

Mean +Standard

. 74.56+19.4 81.08+16.46 82.76+14.96  99.94+40.16 113+34.65 116.18+31.6
Deviation
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As can be seen from Table 2, the accuracy of
each subject under the TRCA algorithm varied, with
the highest accuracy being 98.74% and the smallest
being 27.5%. The attention of each subject and the
difference in EEG signal feedback were factors that
affected the recognition rate. The average accuracy
of all subjects was 74.6 + 19.4% and the average ITR
was 99.94 £ 40.15 bit/min. Compared with the
TRCA feature method, eCCA showed a significant
improvement in recognition rate and ITR, with an
average accuracy of 81.08 + 16.46% and an average
ITR of 113 + 34.65 bit/min for all subjects. The run
data of eCCA-Y algorithm showed an average accu-
racy of 82.76 + 14.96% and an average ITR of
116.18 £ 31.6 bits/min for all subjects, which was
improved for most subjects compared to the first two

subjects were plotted as line graphs to compare the
performance of these three algorithms, as shown in
Fig.9.

Through Fig.9 we can find that the recognition
rate and ITR of eCCA-Y are significantly higher than
those of TRCA, with a recognition rate increase of
about 13%. eCCA-Y has a slightly higher recognition
rate and ITR than eCCA, with an average recognition
rate of 2.1% higher than that of eCCA, and its ITR
also increases by 2.8%.

4.2 The Recognition Accuracy of EEG Sig-
nals in Robotic Arm Systems

The experiment analyzed the data of 5 subjects
and compared the harmonic quantity and time window
data. Finally, a sample point with a harmonic quantity
of 2 and a data length of 750 was selected to compare

algorithms. the classification performance of eCCA and eCCA-Y
The average accuracy and average ITR of the 35 algorithms, as shown in Fig.10.
100
95| ] 140 | :
90 1
125 + 1
851 1 -
S =
< 80¢ ] g 120 ]
g 75} { 2
5 e 95| :
£ | | s
65 1 80 1
60 - 1
65 + .
55+ 1
50 50
TRCA eCCA eCCA-Y TRCA eCCA eCCA-Y
Fig.9 Performance Evaluation of 3 Algorithms
100 T - T i 20 T T T— —
B cCCA | B <CCA
o0 =iy | spo =y
i | . [ 16 |
S 14 |
>
£ z 12
£ £
3 £ 10
it i)
= 8
5 = 6
=]
g 4
2
0
S1 S2 S3 S4 S5 S1 S2 S3 S4 S5
Subject Subject

(a) The Recognition Accuracy of the Subjects

(b) The ITR of the Subjects

Fig.10 Application Performance Evaluation of Different Algorithms
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From Fig.10 (a), it can be seen that the eCCA-Y
algorithm has a higher recognition rate than the eCCA
algorithm. S5 indicates that the accuracy of both is the
same, while S3 has a lower recognition rate compared
to the other four subjects. As shown in Fig.10 (b),
both eCCA-Y and eCCA have improved their ITR.
The maximum difference in ITR was observed among
S4 subjects.

5 Conclusion

In order to improve the frequency recognition
performance of SSVEP, this paper proposes an eCCA
based constrained eCCA method (eCCA-Y), which
adds SSVEP stimulus paradigm design parameters to

the reference signal and inputs the signal into the ro-

botic arm system to achieve control of the robotic arm.

The results indicate that the eCCA-Y algorithm in the
SSVEP frequency recognition method can effectively
improve the frequency recognition accuracy of
SSVEP in the case of short Time Window, and can be
applied to robotic arm systems.
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