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Abstract: As the growing requirements for the stability and safety of process industries, the fault detection and
diagnosis of pneumatic control valves have crucial practical significance. Many of the approaches were presented in
the literature to diagnose faults through the comparison of residual sequences with thresholds. In this study, a novel
hybrid neural network model has been developed to address the issue of pneumatic control valve fault diagnosis.
First, the feature extractor automatically extracts in-depth features of the signals through multi-scale convolutional
neural networks with different kernel sizes, which not only adequately explores the local distinguishable features,
but also takes into account the global features. The extracted features are then fused by the feature fusion layer to
reduce redundant features. Finally, the long short-term memory for fault identification and the dense layer for fault
classification. Experimental results demonstrate that the average test accuracy is above 94% and 16 out of the 19
conditions can be successfully detected in the simulated actual industrial environment. The effectiveness and prac-
ticability of the proposed method have been verified through a comparative analysis with existing intelligent fault
diagnosis methods, and the results suggest that the developed model has better robustness.

Keywords: Pneumatic Control Valve, Feature Fusion, Fault Diagnosis, Convolutional Neural Network, Long

Short-term Memory

1 Introduction

With the informatization and complexity of
modern factories, the condition assessment and fault
diagnosis of pneumatic control valves have become
particularly important in the production process. As the
terminal actuator in process control industrial systems,
the pneumatic control valve consists mainly of a
positioner, pneumatic servo motor, and valve body. Its
primary function is to regulate the flow of liquids and
gases in the pipeline according to the control signal [,
The low price, simple structure, ease of use, and

superior explosion-proof performance make pneumatic

control valves widely applied in the chemical industry,
metallurgy, paper industry, heat and power generation
industry, food industry, etc. Over 90% of the actuators
and positioners on the market are pneumatic %\
However, prolonged operation under harsh external
conditions often leads to various faults in pneumatic
control valves, which not only affects its performance,
but also causes control loop failure. According to the
collected statistics, control valve faults may lead to 20%
to 30% of control loop failures in paper industries and
cause about 70% of faults in chemical industries ©°/.
Unscheduled shut-down due to pneumatic control

valve faults may cause economic loss and even human
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casualties. Therefore, timely fault detection and
diagnosis are essential to quickly identify faults and
plan for overall plant downtime, thereby reducing
maintenance costs.

Many researchers have proposed various approaches
for valve fault detection and diagnosis, including
mainly model-based and data-driven fault detection
methods. The model-based diagnosis method is to
develop a comprehensive mathematical model of the
pneumatic control valve and then observes the
relationship between the model variables and the actual
signals to determine whether a fault occurs. Manninen !
proposed a physical model-based pneumatic control
valve fault diagnosis method by dynamics modeling for
the control valve. Puig et al ! built a mathematical
model of the pneumatic control valve from multiple
perspectives, applying the interval observer to analyze
the residual sequence to detect faults. de Almeida et al ')
utilized the Hidden Markov Model to diagnose actuator
faults by considering the order of occurrence of faults.
Despite the high accuracy of the mechanism
model-based fault detection method, it is challenging
to establish an accurate mechanism model of a
complex nonlinear system such as the pneumatic
control valve. In contrast, data-driven approaches
based on signal analysis evade the difficulty of
establishing the mechanism model and are suitable for
the research of complex systems fault diagnosis.

Intelligent classification algorithms based on
Data-driven have been widely used for valve fault
diagnosis. Bezerra et al ") developed an unsupervised
realtime online self-learning algorithm utilizing the
technology of Typicality and Eccentricity Data
Analytics for industrial processes fault detection. Nair
et al ® proposed a Minimum Redundancy Maximum
Correlation feature extraction method based on
Artificial Bee Colony optimization. The extracted
features were then provided to a Naive Bayes classifier
for valve fault diagnosis. D'Angelo et al ™) transformed
raw data into beta distribution data using fuzzy
clustering, then utilized the Metropolis-Hastings
algorithm to identify change-point probabilities in the

transformed time series for fault detection. Chopra

et al 01012

applied Self-Organizing Map to the
classification of actuator fault categories, which can
effectively classify complex overlapping or similar
Ma et al

data-driven fault diagnosis method using canonical

signals. presented a multivariate
variate analysis for calculating hoteling T2 statistics
and squared prediction error (SPE) of raw data, and
setting appropriate thresholds for fault diagnosis.
Koscielny et al ' discussed the distinguishability of
valve fault symptoms under multivalued evaluation
conditions. The authors used the three valued residual
evaluation to improve the distinguishability of actuator

1 [15]

faults. Louro et a adopted a fuzzy neural network,

pattern recognition, and a heuristic system,
respectively, to diagnose valve faults, none of which
produced a false alarm. Calado et al ''®! designed a fuzzy
qualitative simulation algorithm and a fuzzy neural
network to identify the valve faults. Tang et al !'"'®
developed a T-S fuzzy model to suit the nonlinear
model of valve fault. The model generated various
typical fault residuals for fault diagnosis purposes.

Rodriguez-Ramos et al [

proposed a fuzzy
clustering-based fault diagnosis approach for online
monitoring and automatic learning, which has been
validated in the DAMADICS simulator. Przystatka et
al % utilized the chaos theory and recurrent neural
networks to create a neural network model of the
system, which in the
DAMADICS benchmark. Venkata et al *'! analyzed

valve outlet vibration signals and classified data into

showed its effectiveness

normal and abnormal states using support vector
machines (SVM). In addition, many researchers have
already employed Artificial Neural Network (ANN) in
the study of pneumatic control valve fault diagnosis.

] 2224

Kowsalya et a employed principal component

analysis (PCA) to perform data dimensionality
reduction to abstract essential features, then fed the
extracted features into ANN for fault identification.
Andrade et al ! developed an artificial neural network
based on the construction of decision tree and residual
patterns for pneumatic control valve fault diagnosis.
Ortiz Ortiz et al **! addressed the problem of missing

data on the pneumatic control valve. The authors used
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two imputation methods, the arithmetic mean method
and the mode method, to predict missing values, and
then applied long short-term memory (LSTM) for fault
Although this method has
robustness, too few types of faults can be diagnosed.

classification. good

The above review of pneumatic control valve
fault diagnosis reveals that data-driven fault diagnosis
methods perform well for nonlinear systems like
pneumatic control valves. However, although existing
methods can solve some practical problems, they still
have significant limitations.

1. Most current studies are on fault diagnosis by
setting thresholds or calculating residuals, and such
methods depend more on prior knowledge.

2. Most current data-driven fault diagnosis
methods on valves have shallow network structures,
which are difficult to mine the in-depth features and
take into account both global and local features of
complex signals.

3. Most current studies only consider a small
subset of fault types, and when the types of fault
increase, the effectiveness of these methods decreases
dramatically.

In the

convolutional neural network (CNN) model has been

scientific literature reviewed, no
developed yet for fault diagnosis research of valves.
Aiming at the challenges mentioned above, this paper
designs a novel hybrid fault diagnosis model
combining multi-scale convolutional neural network
and long short-term memory network (MSCNN-LSTM)
of the pneumatic control valve. The model incorporates
feature extraction, recognition, and classification
methods, which substantially simplifies the diagnosis
process. The key contributions of this study are
summarized as follows:

1. To the best of our knowledge, it is the first time
that a hybrid deep learning model of MSCNN-LSTM is
proposed for fault diagnosis of pneumatic control
valves. The multi-scale CNN structure with a more
abundant field of view effectively extracts the in-depth
features of the data, and the use of feature fusion layer
greatly reduces the impact of redundant features.

2. The model accurately identifies 16 out of the 19

conditions of the pneumatic control valve in a

simulated actual industrial environment. Comparison
with the existing methods indicated that the
MSCNN-LSTM framework can effectively detect the
maximum number of faults.

3. Due to the limited fault data of pneumatic
control valves, the model has been developed and
verified on a small sample set.

The structure of the paper is organized as follows.
Section 2 introduces the relevant theoretical context
and explains the structure of the framework in detail.
Section 3 describes the dataset, the model training
process, and the validation results. Section 4 visualizes
the model inference process, classification effect
comparison, and robustness experiments, and finally,
Section 5 draws the brief conclusion from the result

and highlights the planned future work.
2 Materials and Methods

2.1 Convolutional Neural Network

CNN is a biologically inspired feedforward neural
network and also one of the typical deep learning
algorithms "1, It is widely used in speech recognition,
fault classification, image processing, etc. Generally,
the time domain signals or frequency domain signals
are used as the input to the one-dimensional CNN. As
with other neural networks, it is essential to normalize
the input features of CNN, as this can greatly enhance
their operational efficiency and learning performance.

The cornerstone of feature extraction lies in the
convolution layer, whereby the convolutional kernels
have the pivotal role of capturing the corresponding
data features. An increase in the number of convolution
kernels leads to progressively more abstract feature

extraction 2%

. The present study proposes a model
consisting of multiple convolutional layers. The
convolutional layers perform convolution operation on
the input features, generating an output that is further
nonlinearly processed by the Tanh activation function
before being passed to the next convolutional layer.
This process enables the network to mine increasingly
complex representations of the input data, thereby

improving its learning capability. The mathematical
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formulation is elucidated as follows:
Z(j) = & xX'(j) + 1, (1)
where Zl.’ (j) 1is the output feature of the convolution

operation at /-th layer, w,.l is the weights at /-th

layer, x/(j) is the input feature at /-th layer, u is the
bias, and i represents the i-th filter.

Pooling layers are commonly utilized in the
CNN architecture and are typically positioned
between two convolutional layers. This placement
allows for the pooling layer to perform as a
down-sampling operation, creating a sparser feature
map and efficiently reducing the overall network
parameters. The most popular pooling layer is the
maximum pooling layer, and its transform function is

commonly described as follows:
P;H(l’) =(i—1)/\r}}r}a§t§iX{q.i' 03, (2
where ¢ represents the 7-th neuron, / represents the /-th

layer, qi. (f) represents the value of neuron, X

represents the scale of the pooling area, and Pj[ () is

the output result of the pooling operation.

The primary purpose of the fully connected layer
is to convert the pooled neurons into a unidimensional
vector representation. For multiclassification problem,
the activation function applied to the last fully
connected layer is commonly the softmax function, to
obtain the

belonging to each category. The fully connected layer

probability distribution of samples

can be represented as:

Z%0 = QY X1 a) (0 +uly, 3)

J=1 t=1

where X ?[/ represents the weights at layer 7, Z"*'(i) is

i

the output value of the fully connect operation at layer

+1, o

. indicates the bias, a§ (¢) is the output result at
layer /; f(-) is the softmax activation function.
Activation functions are essential for the ANN
model to understand complex nonlinear signals. The
commonly used activation functions mainly include
ReLU, Tanh, and Sigmoid. Whose mathematical

formulations are:

Sigmoid(v) = ! — 4)
1+e™
Tanh(v) =€~ )
e t+e
ReLU(v) = max(0, v) (6)

2.2 Long Short-term Memory

Due to the gradient disappearance and gradient
explosion problems, the learning ability is limited to
traditional recurrent neural networks. LSTM is an
improved recurrent neural network whose advantages
in relatively long-term memory make it widely used in
time series prediction **?!. LSTM uses special hidden
units to retain long-term memory, for a time domain
signal x,, its internal hidden cell and output can be

expressed as follows:

ft :O-(H/ '[kt—1> xt]+u,/) (7)
iy = 0(H, [k, x]+u,) (8)
0 = O-(Ha '[kt—l’ xt]+uo) (9)

¢ = f; Oc,_y +i, Otanh(H, -[k,_,, x,]+u,) (10)

k, = o0, Otanh(c,) (1n
Where u represents the bias; and H represents the
weights. 7 indicates the input gate, findicates the forget
gate, O indicates the output gate, ¢ is the sigmoid
activation function, k,is the corresponding output, and

c is the cell state.
2.3 Proposed Hybrid Model of MSCNN-LSTM

Generally, time series signals exhibit both local
and global features. To thoroughly extract both features,
this paper proposed a MSCNN-LSTM hybrid deep
learning model for pneumatic control valve fault
detection and diagnosis. The MSCNN-LSTM hybrid
model consists of a feature extractor and a feature
identifier, its detailed structure is shown in Fig.1. The
small fields of view are sufficient to extract the local
key features of the signal deeply, and the large fields
of view are sufficient to capture the positional
relationships between the long-term features of the
signal. Despite multi scale CNN with strong feature

extraction capability, its ability to classify features is
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Fig.1 Proposed Hybrid Model of MSCNN-LSTM

limited. LSTM can learn the long-term dependency
between two entities to handle global features, which
has some advantages in feature identification. Therefore,
the hybrid neural network model MSCNN-LSTM can
effectively handle such fault signals. Moreover, the
distinctive gate structure of LSTM has a filtering effect
on noise and hence enhances the anti-noisy capability of
the model, making the MSCNN-LSTM hybrid model
more robust than other models.

The fault diagnosis based on the MSCNN-LSTM
hybrid model consists of two steps. First, the training
set will be fed into the hybrid model for model training,
and then, the trained model will be utilized to diagnose
faults in the testing dataset. The processing of the
model can be outlined as follows:

1. Apply PCA to the raw data for reduction in
dimensionality;

2. Perform data augmentation using the sliding
window method and then label the dataset;

3. Divide the dataset into training, validation, and
test sets;

4. Set the initial parameters of the model, then
input the training set into the network for parameter
optimization until the diagnostic accuracy on the
validation dataset can meet the practical requirements,
and skip to step 6;

5. Utilize the test dataset for model validation and

evaluate the diagnostic capability of the model.

3 Experiments and Results

3.1 DAMADICS Benchmark

The DAMADICS selected three industrial actuators
from the sugar production process at the Lublin sugar
factory in Poland as the experimental objects, according
to the working principles of the actuators, the
comprehensive consideration of the detailed physical and
electrical structure characteristics of the industrial
actuators and their typical engineering requirements for
working in harsh environments, along with the large
amount of real data generated during operation, were
utilized to complete the development and validation of
the platform *!. The actuator consists of a control valve,
pneumatic servo motor, and positioner shown in Fig.2.
The sub-elements of the actuator correspond to the
industrial devices: servomotor type 37, positioner A785,
and equal percentage control valve . The actuator
controls the valve opening through the control external
signal CV and regulates the system state by setting the
basic parameters liquid temperature T1, Valve inlet
pressure P1 and outlet pressure P2, and the resulting
feedback signals stem displacement X and the fluid flow
F will be used for fault diagnosis. During the operation of
a pneumatic control valve, several components such as
the control valve, positioner, servo motor, and pneumatic
actuator could break down. The benchmark can simulate
19 specific fault types, as shown in Table 1.
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Fig.2 Structure of the DAMADICS

3.2 Dataset Description and Preprocessing

Principal Component Analysis (PCA) is a

methodology  for  projecting  high-dimensional
information into a low-dimensional subspace and

maximizing the retention of the raw information.

Moreover, PCA can eliminate the effect of redundant
data. Since the original signals are two-dimensional
data, irrelevant and redundant parameter features are
bound to exist in the data set. PCA technique is
introduced to reduce the data dimensionality and
enhance the computational efficiency. Meanwhile, to
satisfy the model training requirements, this study uses
the sliding window sampling for data augmentation !,
The sampling method is shown in Fig.3. Supposing
that the selected sample length is L and the step size is
S, if the data set has N data points, we can obtain
((N-L)/S)+1 training samples.

Totally 4066 samples were produced for the
normal and abnormal operating conditions of the
pneumatic control valves, with 214 samples for each
state, and each sample is 1024 in length. The samples
are divided into two sets randomly, of which 80% are
used for model training and 20% for model validation.
The labels are labeled using the One-hot encoding
technology.

Table 1 Details of the Generated Dataset

Fault Description Label  Fault Description Label
FO No fault 0 F10 Diaphragm perforation of servo motor 10
F1 Valve clogging 1 F11 Spring fault of servo motor 11
F2 Valve plug sedimentation 2 F12 Fault of Electro-pneumatic transducer 12
F3 Valve plug erosion 3 F13 Rod displacement sensor fault 13
F4 Bushing friction 4 F14 Caused by electronics —
F5 External leakage 5 F15 Positioner feedback fault 14
F6 Internal leakage 6 F16 Positioner supply pressure drop 15
F7 Medium evaporation 7 F17 Unexpected pressure changes 16
F8 Piston rod twist of servo motor 8 F18 Fully or partly opened bypass valves 17
F9 Tightness of the servo motor's housing 9 F19 fault of flow rate sensor 18

ISR

PROTENRTYL Semele | RTENTI I
S

|

Fig.3 Overlapping Sampling Method
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3.3 Experiment Setup

The selection of model hyperparameters is also
crucial for the model to attain high accuracy and better
robustness. There is no defined guideline for setting
model parameters, and we have obtained an optimal set
of model hyperparameters by experimenting with the
network architecture composed of various parameters.
These parameters include mainly the number of kernels,
the size of the kernels, the activation function, the size
of the features, and the number of neurons in the LSTM.
The model takes the cross entropy as the loss function.
Table 2 shows the model hyperparameters. The model
is developed based on Tensorflow2.9.1, and all results
are obtained from 100 training iterations on the
Windows 10 64 bit operating system, Intel(R) Core
(TM) i7-7700HQ CPU @ 2.80GHz, and 8 GB RAM.

3.4 Experimental Results

Following the training, the developed model is

tested with the test set to evaluate its performance.
Table 3 depicts that the average test accuracy for the
model is above 94%, and Fig.4 presents the confusion
matrix for the test outcomes, which indicates some
misclassifications. Specifically, the model misclass
the label O to labels 8 and 15, label 4 to label 12, label
8 to label 0, and label 15 to labels 0 and 8. The major
factors for such phenomenon are that some of the
samples are so similar or even overlapping with each
other or the signals used for fault diagnosis are weakly
impacted by these faults. And the high similarity of
samples is attributed to the similar occurrence
mechanism of these faults. Nevertheless, the model
can successfully detect 17 faults, and 15 faults
achieve 100% detection accuracy. However, to
provide a comprehensive and scientific evaluation,
this paper also presents additional indices for
assessment, including precision, recall, and F1-score.

Whose function expressions are:

Table 2 Model Hyperparameters

Name Filters Kernel size/stride Units Input size Output size Activation function
convld 1 50 64/2 1024x1 481x50 tanh
convld 2 50 64/2 481x50 241%50 tanh
maxpooling_1 2/2 241x50 120%50

convld 3 30 32/2 120x50 60x30 tanh

convld 4 30 32/2 60x30 30%30 tanh
maxpooling_2 2/2 30%30 15%30

convld 5 16 4/2 15x%30 8x16 tanh
maxpooling_3 2/2 8x16 4x16

convld 6 50 4/2 1024x1 511x50 tanh

convld 7 50 4/2 511x50 256x50 tanh
maxpooling_4 2/2 256x50 12850

convld 8 40 3/2 128x50 64x40 tanh

convld 9 40 2/2 64x40 32x40 tanh
maxpooling_5 2/2 32x40 16x40

convld 10 16 2/2 16x40 8x16 tanh
maxpooling_6 2/2 8x16 4x16

LSTM 8 4x16 4x8 tanh

batch normalization 4x8 4x8

flatten 64 4x8 1x32

dense 19 1x32 1x19 Softmax
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Accuracy=(TP+TN)/(TP+FP+FN+TN) (12)
Precision=TP/(TP+FP) (13)
Recall=TP/(TP+FN) (14)
F1=2XPrecisionx Recall / (Precision+ Recall) (15)

where TP denotes the quantity of true positive
outcomes, TN denotes the quantity of true negative
outcomes, FP denotes the quantity of false positive
results, and F'N denotes the quantity of false negative
results.

Table 3 presents the precision, recall, and
Fl-score achieved by the proposed model in fault
diagnosis. Except for labels 0, 8, and 15, the model
exceeds 90% for each index of 16 faults. Note that the
whole fault diagnosis outcomes illustrate that the
MSCNN-LSTM hybrid framework can effectively
detect 17 faults.

4 Discussion

4.1 Network Visualization and Classification
Performance Visualization

ANN model is an end-to-end learning approach.
Despite its superior performance in feature extraction
and fault classification, its processing is still a black
box model. To explore its underlying inference process
and rationality of construction, this section visualizes
the internal structure of the model. Feed the test set into
the trained model to visualize the activation state of
each hidden layer unit, as shown in Fig.5 which
visualizes the hidden layer of fault F3. The yellow hue
presents that a region is activated, and the green hue
presents that the region is not activated. It can be seen
that the first hidden layer has few activation points, and
it is difficult to distinguish the faults from each other.
However, as the network goes deeper, the feature map

Confusion Matrix

o-mo 00 0 0 0 OfEO 0 0 0 0 0 0 0 0

140 0 00 000 0 0 0 O0O0O0O0 O0 0 0 40
240 o 000 00O 0 0 O0O0O0O0 0 0 0

340 0 0 ®» ®© 0 0 @ 0 © O ® ®© O 0 0 0 @ 35
440 0 o o 000 000 0 0 0 000 0 0 0

540 0 0 0 0 ® 00 0 0 0 OO ® O 0 0 O 30
640 0 0 0 0 0 "0 0 0 © O OO0 0 O
3 740 0 0 0 0 0 OFkMO O O O O O O O O O O ’s
= 842 0 0 0 0 0 0 0 0 00 000 4 0 0 0
5t
%9-0 00 0 00 0 0 0 00 0000 0 0 0 0
£1040 0 0 0 0 0 0 0 0 O ®n® 0 0 00 0 0

m40 o0 o0 0o 00 0 0 0 0 0 © ® 0 0 O 0 @

1240 0 0 ONEEO 0 0 0 0 0 O O ® 0 0 0O @ - 15
1340 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0

RO 0 0 0 00 0 O 0 @ O 0 O @ »© 0 0 L 10
15-m0 00000 0 0 00 O0 0 0 00 0 0

1640 0 0 0 0 000 0 0 0 0 0 0 0 0 0 @ | 5
17490 0 0 0 0 00 0 0 00 0 0 0 0 0 0 0

1840 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0

- ______ L 1o
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
True label

Fig.4

Confusion Matrix of the Model Classification Results



20 HAO Hongtao et al: Fault Detection and Diagnosis of Pneumatic Control Valve Based on...

Table 3 Pneumatic Actuator Fault Diagnosis Results
Using MSCNN-LSTM

Label  Precision (%) Recall (%) F1-score (%)
0 53 49 51
1 100 100 100
2 100 100 100
3 100 100 100
4 100 93 96
5 100 100 100
6 96 100 98
7 100 100 100
8 87 95 91
9 100 100 100
10 100 100 100
11 100 100 100
12 93 100 97
13 100 100 100
14 100 100 100
15 52 51 52
16 100 100 100
17 100 100 100
18 100 100 100

Accuracy 94.1

becomes more evident and the activations of the two
channels are different. Comparing the activation of the
both channels, it can be found that the first channel has
superior activation for shallow features, while the second
channel has excellent activation for in-depth features, and
then the two features are feature-complemented in the
fusion layer to provide more comprehensive features for

Conv_1

Pooling_5

-. E :

SIS S L

subsequent feature identification.

Evaluating the performance of a model solely on
the basis of its is both
unconvincing. To provide further substantiation for the

output illogical and
effectiveness of the model, this study employs the
t-distributed stochastic neighbor embedding (T-SNE)
technology to visualize the classification effect. The
outputs of the last layer for both channels, the fusion
layer, the LSTM layer, and the dense layer of the model
were visualized, as illustrated in Fig.6. The T-SNE
results indicate that distinguishing the 19 different state
signals from raw data inputs is not feasible. However,
when the features of original data are extracted by the
feature extractor, the signals have a certain degree of
discrimination and the classification effect of the two
channels are different, which corresponds to the
visualization of the inference process in Fig.5. After
fusing the features of two channels by the fusion layer,
the distances among the fault samples become farther.
Then, LSTM effectively classifies all signals except
labels 0, 8 and 15 and the classification result becomes
more apparent after the dense layer. Fig.4 shows that
the model misclassifies some labels 0, 8 and 15 for
each other and a few labels 4 as label 12, which are
reflected in the last layer output visualization in
Fig.6(f). The visualization of the classification effect
confirms the reliability of the model classification
results and the reasonability of the structure.
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Fig.5 Hidden Layer Unit Activation State Visualization of Fault F3
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Fig.6 The Output Features Visualization of Different Layers
(a) Raw Signal; (b) The Output Features of the Last Layer of the First Channel; (c) The Output Features of the Last Layer of the Second Channel;
(d) The Output Features of the Fusion Layer; (¢) The Output Features of the LSTM; (f) The Output Features of the Dense Layer

4.2 Comparison between Other Methods and
Our Proposed Model

The above comprehensive analysis and verify the
effectiveness of the method for pneumatic control
valve fault diagnosis. In order to demonstrate the
superiority of the proposed method, the CNN,
Recurrent neural network (RNN), LSTM, K-nearest
neighbor (KNN), and SVM are tested separately on the
same dataset. As shown in Fig.7(d), CNN and LSTM
have higher accuracy, 87% and 74%, respectively.
However, the hybrid model achieves the highest
detection accuracy of 94.1%, and outperforms other
data-driven methods. This section also compares the
precision, recall, and F1 score of the proposed method
with other data-driven methods in Fig.7(a)(b)(c). The
comparison reveals that these models can detect fewer
types of faults and have poor classification performance,
which is incompetent for the fault classification of
pneumatic control valves. This may be attributed to the
high similarities between the fault signals, and the
shallow features extracted by these networks that are
insufficient to distinguish the discrepancy between the
signals.

The proposed framework is also compared with

existing methods presented in the current scientific
literature according to the test accuracy in Table 4.

11 realized the online detection

Rodriguez-Ramos et a
of 8 faults. Ortiz Ortiz et al *! reported only results for
abrupt faults. Subbaraj et al ** detected only valve
faults. D'Angelo et al ' detected fewer types of
faults although it has achieved 100% correct accuracy.
Bezerra et al " detected all 19 types of faults, but the
detection accuracy for F4 and F13 was extremely low,
and only 8 faults were detected with an accuracy of
more than 90%. Ma et al ¥ used the Hotelling T2
statistic and the Squared Prediction Error (SPE),
respectively, to assess whether a fault occurred. The
results of the two methods with higher detection
accuracy are listed in the table, which showed that
about 10 faults could be detected. Han et al 1*! detected
14 of the 19 faults successfully and more than 99%
diagnostic accuracy for 12 faults. Przystalka et al 1**!
had a high detection accuracy of more than 95% for 13
faults. The proposed MSCNN-LSTM model achieved
an average diagnostic accuracy of 94.1%, and the
diagnostic accuracy of more than 90% for 17 faults, 15
of which reached 100%. The comparative results have
indicated the superiority of the method over other
methods proposed in the literature.
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Table 4 Comparison of Methods Used to Detect Faults in Pneumatic Actuators

[26] [7] [24] [13] [19] [20] [3] [16] [9] Proposed
Fault Ortiz Ortiz  Bezerra Subbaraj et al Ma et al Rodriguez- Przystalka Han et al Calado et al D'Angelo Hao et al
et al et al Ramosetal etal et al
Normal  98.5 — — 100 — — — — 49
Fl1 97.5 92.01 100 77.06 — 100 100 — — 100
F2 — 83.33 97.6 100 — 100 100 100 — 100
F3 — 36.63 100 2.41 — 93 — — — 100
F4 — 0 99.4 1.27 — 55 86.21 — — 93
F5 — 72.28 99.1 2.28 — 60 — — — 100
F6 — 73.27 99.3 2.34 — 96 31.96 — 100 100
F7 99.5 100 99 100 99.17 99 100 100 — 100
F8 — 93.33 — 2.41 — — — — — 95
F9 — 91.3 — 2.34 — 19 — — 100 100
F10 — 91.67 — 59.44 — 100 100 100 — 100
Fl1 — 89.74 — 6.97 — 99 100 100 100 100
F12 99.5 93.02 — 1.71 99.58 95 99.63 — — 100
F13 — 0.09 — 77.06 — 100 100 100 100 100
Fl14 — 80.76 — 2.41 — — — — — —
F15 97 68.63 — 98.80 97.17 99 100 — — 100
Fl16 — 83.52 — 53.74 97.25 99 100 — — 51
F17 — 83.93 — 100 92.33 99 99.71 100 100 100
F18 — 93.65 — 76.68 100 100 100 100 100 100
F19 99 97.16 — 75.29 96.83 100 100 100 — 100
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4.3 Performance of Different Models in the
Simulated Actual Industrial Environment

To validate the generalization performance of the
model in the actual industrial environment, by
superimposing white Gaussian noise and 50Hz sine to
the original signals to simulate the noise interference
and the sensor errors reasonably, and set the artificial
noise amplitude to 2.5% of the nominal range of the
signal ). Fig.8 shows the added noise signal.

Fig.9 depicts the average detection accuracy of
different algorithms in the simulated actual industrial
environment. The average detection accuracy of all

environment, but the accuracy of the MSCNN-LSTM
hybrid model still achieves the highest accuracy of
87%. The average detection accuracy decreases mainly
because the model has misdetection cases for some
faults. From Fig.10, it can be seen that the model
misidentifies label O as labels 8 and 15, label 4 as label
7, label 8 as labels 0 and15 and label 15 as labels 3, 8
and 11. Due to the similarity between the faulty
samples, adding noise to the signals leads to some fault
data overlapping each other and being difficult to
distinguish. However, the model could still identify 16
faults accurately. Notably, the proposed MSCNN-
LSTM hybrid model exhibits better robustness in the

models decreased compared to the noise-free simulated real industrial environment.
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Fig.9 Average Detection Accuracy of Different Models in the Simulated Actual Industrial Environment
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Fig.10 Confusion Matrix of the Classification for the Model in the Simulated Actual Industrial Environment

5 Conclusion

To achieve accurate pneumatic control valve
fault diagnosis with insufficient actual fault condition
data, an intelligent diagnosis approach for pneumatic
control valves based on a MSCNN-LSTM hybrid
model was presented in this paper. The multi scale CNN
simultaneously extracts the local key features and
long-term features with rich fields of view to maximize
provide distinguishable in-depth features for subsequent
feature recognition operations. All fault data are collected
from the DAMADICS simulator. The experimental
results indicate that the average test accuracy is above
94%, and successfully detects 16 out of the 19 conditions
in the simulated actual industrial environment.
Comparative analyses of various artificial neural network
algorithms and corresponding scientific literature further
demonstrate the superiority of the proposed model. The

hybrid model not only does not require prior knowledge,

but also has remarkable advantages and better robustness
for handling complex nonlinear timeseries fault signals
such as the pneumatic control valve.

The limitations of the proposed model are that all
data used for model training are derived from the
simulator, and only two kinds of sensor signals are
considered. Our future work will focus on multi sensor
fusion for pneumatic control valve fault diagnosis.
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