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Abstract : Online sensing can provide useful information in monitoring applications, for example, machine health monitoring,
structural condition monitoring, environmental monitoring, and many more. Missing data is generally a significant issue in the
sensory data that is collected online by sensing systems, which may affect the goals of monitoring programs. In this paper, a se-
quence-to-sequence learning model based on a recurrent neural network (RNN) architecture is presented. In the proposed meth-
od, multivariate time series of the monitored parameters is embedded into the neural network through layer-by-layer encoders
where the hidden features of the inputs are adaptively extracted. Afterwards, predictions of the missing data are generated by net-
work decoders, which are one-step-ahead predictive data sequences of the monitored parameters. The prediction performance of
the proposed model is validated based on a real-world sensory dataset. The experimental results demonstrate the performance of

the proposed RNN-encoder-decoder model with its capability in sequence-to-sequence learning for online imputation of sensory

data.
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1 Introduction

Recent developments of the Internet of Things
(ToT) systems facilitate information gathering and
online monitoring processes, which also take more
and more significant roles in various other fields,
such as micro-electromechanical systems (MEMS) ,
intelligent instrumentations, robotics, and so on.
Particularly , in monitoring applications, the IoT sys-
tems equip different sensing and sensory devices with
the access to local or wide area network, providing
data collection, aggregation, processing, and analy-

s !, Trrespective of the monitoring objectives, col-
lection and delivery of reliable sensory data are still
facing significant challenges in the data acquisition
process using [oT sensing systems, especially when
involving high-volume online measurements.

Due to limited onboard computational and ener-
gy resources, external disturbances, and unexpected
failures, the problem of missing data is frequently
encountered in IoT-based sensing systems. The miss-

ing data leads to unavailable or meaningless sensory

data, which can cause instability in the data acquisi-
tion process. Such a phenomenon not only will affect
system reliability for online applications, but also
will influence the quality of the collected data for
further analysis and information gathering. For exam-
ple, missing sensory data may cause a dangerous or
even damaging condition for real-time decision-mak-
ing applications that heavily rely on sensor readings,
e.g., in autonomous vehicles. In addition, missing
data in a dataset can cause losses of statistical char-
acteristics and introduce statistical bias potentially.
In general practice, a dataset with large quantities
of missing values without any preprocessing may
mislead the implementation of a learning algo-
rithm, which can severely impact the inference
outcomes, such as classification or prediction, as
a consequence >’

In order to handle the missing data issue without
sacrificing the size of a dataset, an effective scheme
is required to predict un-sampled sensor readings by

making use of historical observations of the moni-
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tored parameters. Such methodology is called data

imputation '*'

. In the literature, traditional imputa-
tion approaches commonly depended on maximum
likelihood ( ML) methods and multiple imputations
(MI) methods '*'. Both of them relied on a strong
assumption that the parameters of the datasets were
independently and identically distributed
(i.i.d) "*°! This assumption may not always be ap-
plicable for real-world sensory data.

More importantly, inter-correlations among sen-
sory parameters might exist in reality. The relation-
ships among them are generally nonlinear and com-
plicated. To establish a more complex model for de-
scribing the underlying environmental field, the
state-of-the-art data-driven methods were actively
studied,
(ANN) ' support vector machine (SVM) '
support vector regression (SVR) '“ | and many of

their variations "' .

including artificial neural network

Although the mentioned methods provide more
complicated modelling architectures, they may not
be suitable to characterize underlying environmental
fields that have complex interdependencies and inter-

actions [V

. Recently, with the fast development of
deep learning techniques, deep neural networks
(DNN) have been designed to model complex envi-
ronmental fields. With the strong capabilities in rep-
resentative learning and nonlinear modeling, the
DNNs provide the superior tools for tasks such as da-
ta prediction and data imputation. Among them, re-
current neural networks ( RNN) are proven to be
more suitable for time series prediction. For exam-
ple, long short-term memory ( LSTM ) networks
have been widely applied as the state-of-the-art RNN

2 which construct a unit with a cer-

b

architectures
tain forgetting rate to characterize short and long
term time series. Recently, the RNN encoder-decoder
model has been introduced for translation, which was
considered as sequence-to-sequence learning ', The
work of ' further adopted the original RNN-en-
coder-decoder to time series prediction. Different

from these recent work, the proposed model focuses

on the one-step-ahead data sequence imputation of
the monitored sensory parameters, rather than pre-
dicting the upcoming time series of a monitored sen-
sory parameter.

In this paper, a sequence-to-sequence learning
method based on an RNN-encoder-decoder model is
introduced. The model simultaneously predicts the
missing data of the multiple monitored parameters
for multivariate data imputation. Specifically, the
encoding layers of the network extract underlying
features to represent the driving features within the
input time series. The decoding layer of the network
predicts the data sequences of the monitored parame-
ters in a one-step-ahead manner. The predictive data
sequences are utilized for online imputation of the
missing data, afterwards. The proposed model is
tested based on a real-world dataset in this paper.
Prediction results are compared with the-state-of-the-
art methods, which show the superior performance
of the proposed method for the imputation of missing
sensory data.

The rest of the present paper is organized as fol-
lows. Section 2 introduces the formulation of the re-
search objective in data sequence prediction. Section
3 presents the proposed RNN-encoder-decoder for
data imputation in detail. The experimental results
based on a real-world sensory dataset are demonstra-
ted in Section 4. The final section concludes the

present paper.
2 Formulation

The goal of the present paper is to predict the
future sensory data of multiple parameters in a one-
step-ahead manner by making use of their historical
data streams. These historical data sequences are de-
fined by a sliding time window. Given a time win-
dow T, the collected data sequences by N different
sensors lead to multivariate time series, which is
designated by X = (X', X*,---, X")", where X" e
R", n=1,2,---,N. In a time window, each time step
is indexed by ¢, t={1,2,---,T}.

At each time step 7, the measurements over all
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X", e R. The one-step-ahead prediction of a data se-

sensors can be obtained as X,=(X"',,X?,,

quence is formulated as:

yT+1:F(X1’X2"",XT) (1)

o~

= 1 '2 Dy
where Y = (yT+] » V141

predicted data sequence, F denotes the nonlinear re-

,yr )" denotes the

gression function. The proposed RNN-encoder-de-
coder is introduced to establish the function F in E-
quation (1). More details are presented in the fol-

lowing section.
3 Proposed RNN Architecture

The proposed RNN model is introduced in this
section in detail, which has an encoding-decoding
architecture. In the model, encoders are utilized to
extract the hidden features within the input time se-
ries while the decoders map the hidden features to
the predictive outputs of the one-step-ahead data se-
quences. The detailed architecture of the encoding
layers and the decoding layers are presented as fol-
lows.

First, the encoding layers exploit the underlying
features within the input time series and extract the
driving features to make predictions. In the RNN
model, the recurrent function is defined to construct
the encoding layers. Specifically, at time ¢, the re-
current function can be represented as;

h.,=f(h,,X,), (2)

where f denotes the recurrent function, h de-

notes the hidden state that will be learned via the re-
current function in the encoding layers iteratively.

In the present paper, the LSTM network is se-
lected as the recurrent function. The LSTM network
has the capabilities in modeling multivariate time se-
ries, especially by considering both the long term

and short term inside time

12]

interdependencies

series -

. A LSTM unit can be formulated as:
i W, b,

ff =G( Wf [hl—1®Xt]+ bf )a

o w b

1 o o

j,=tanh( VVJ [hr—l®Xz] +bj>

$,=f,®s,,+,&),
h,=o,Xtank (s,) (3)
where @ denotes the concatenation operator,
&) denotes the element-wise multiplication operator,
o denotes the logistic sigmoid function, and tanh de-
notes the hyperbolic tangent function. The basic unit
of the LSTM structure is shown in Fig. 1.

Fig. 1 Basic unit of the LSTM structure.

When encoding the multivariate inputs, instead of
inputting the time series to the recurrent function di-
rectly, an attention layer is integrated to weight the
input vectors before embedding them into the LSTM
layers. The attention mechanism was studied in the
work of """ to align between the input vectors and
the hidden states, in order to pay more attention on
the more important input vectors. In the attention
layer, the attention value is defined through a multi-
layer perceptron in a probability form «, which is
defined as:

exp(al")
am,:%, (4)
Zm=lexp(ar )

where a!" =v" tanh (W, [h,,;C,,1+U, Xm, .+

=19

b,) represents the alignment between the hidden
states k., , cell states C,, and the input vectors X7 ;.

The probability «”, indicates the importance of the

input variable m for the predictive output at time step

~

As a result, the recurrent function is updated

ht+l :LSTM(htsax®Xt) ’ (5)
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where @, = (a!,a’,--+,a")" and a,®X, de-
notes the weighted input vectors.

After encoding the multivariate time series in-
puts to the encoding layers, the predictive outputs
are generated through the RNN decoding layer. With
the similar structure, an attention layer is embedded
into the model before the LSTM stacks of the decod-
ers. The attention probability 3 is defined as;

exp(b;,)
" ELiexp(b))’

where b, = v, tanh (W, [h,;C. 14U h +b,).

The probability B!, indicates the importance of the

(6)

hidden state i when making prediction of the m th
parameter of the predicted data sequence output. The
recurrent function of the decoding layer can be for-

mulated as:

dm+l :LSTM(dm’[y;er@ch ) ’ (7)
where ¢, =3[ B,h,, m=1,2,--,M.
Given the learned hidden states and the tempo-

rally distribution weights of them,the predictive out-

Encoding Layers

) Attention layer —3 @, —3 & ® X

l

> Attention layer — a, H a,® XM

1
XlT

LT

LM
Xll

M
Xir

l

L— Attention layer — a, H a, ® XM

C,

T-1> VT

h

puts of the monitored variable m within the predicted
data sequence at time step t=7+1 can be obtained

through a linear map, which is formulated as;

o~

Va1 :F(Xi:T’XiTv ’lew:r> s
=v'(W,[c,;d,]1+b,) +b. (8)
The overall architecture of the proposed RNN
model is shown in Fig. 2. As shown there, first the
input vectors are handled by the attention layers be-
fore inputting into the LSTM layers in the encoding
structure. Afterwards, the hidden states are also han-
dled by the attention layers before embedding into
the LSTM layers in the decoding structure. In the
training process, the data sequence of the next time
step is used as the a sequence label.
For training the proposed RNN encoder-decoder
model, since the overall architecture is differentia-
ble, back-propagation algorithm with an Adam opti-

[15]

mizer is implemented. Mean square error ( MSE)

is selected as the metric of the loss function in the

training procedure, which is defined as:
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Fig. 2 The overall architecture of the proposed RNN model.

Loss=11y(©)-ylI*, (9)

where @ denotes the set of the learnable param-
eters that will be trained in the training procedure.
For a sliding time window, the data sequences of all
the monitored parameters at next time steps are pre-
pared as the labels and learned by the network via

the training procedure.

4 Experiment

This section demonstrates the prediction per-
formance of the proposed model in forecasting multi-
variate data sequences, which is based on the experi-
ments of a real-world dataset from sensory data in an
indoor sensing network. The description of the data-

set and the experiments are given in the following
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subsections.

4.1 Real-World Dataset

To examine the prediction performance of the
proposed model, the sensory data collected at Intel
Berkeley Research Lab was selected as the experi-
mental dataset '’
28th, 2004 to April 5th, 2004. The dataset measured

and recorded four physical parameters of the study

, which ranges from February

indoor environment, i.e., temperature,

from 54 Mi-

ca2Dot sensors with a sampling rate of approximate-

humidity,
light intensity, and battery voltage,

ly every half minute. The sensors were located over
the monitored area as shown in Fig. 3(a).

In the dataset, all four monitored parameters at
each station were sensed and recorded as the time se-
ries with approximately 30 seconds in between each
two consecutive time stamps. If a specific time stamp
does not exist in the dataset, it indicates a loss of da-
ta at that corresponding time. The rates of the miss-
ing data at all the 54 sensor stations are summarized
and visualized in Fig. 3(b) by plotting at their cor-
responding locations. In the figure, lighter color re-
presents lower missing rate while darker color indi-
cates higher missing rate. As it is shown, the loss of
data commonly existed in the dataset at all the sen-
sors over the spatial scale.

The time series of the four monitored parame-
ters taken from No. 1 sensor is displayed in Fig. 4
(a). A value of -1 is assigned to annotate the miss-
ing data of a sample. The subfigures display the vari-
ation of each monitored parameter and the missing
data over time variation. To visualize the distribution
of the missing data more clearly, Fig. 4(b) shows
the detailed conditions of the missing data by zoo-
ming at a subinterval of the acquisition time period
that is highlighted by the grey boxes A in Fig. 4(a).
From this zoomed display, it can be perceived that
the amount of missing data is large. The missing rate
at this sensor station is about 44%.

Besides the overall missing rate found in this
dataset, it can also be observed that a complete

consecutive missing period over a long time steps
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Fig. 4(b) Zoomed displays of the time series of the

monitored parameters.

occurred, for example, over 3000 among time steps
in [3(10*),4(10*)] in Fig. 4(a), highlighted by
the orange boxes B. Such dense missing rate over a
large time period is commonly found throughout all
54 sensors. If missing data occurred, it is highly
likely that the samples of four parameters were
missed simultaneously. This phenomenon further re-
veals the significant issue of missing data that is ad-

dressed in this paper.

4.2 Experimental Results

The proposed RNN model is validated based on
the Intel lab dataset that is introduced in the previous
subsection. The proposed model is also compared
with the state-of-the-art models for data imputation,
including autoregressive integrated moving average
model (ARIMA) , nonlinear autoregressive network
with exogenous inputs model (NARX) , and LSTM-
RNN model. To compare with these models fairly,
the corresponding model parameters are tuned to pro-
vide their best performance in the experiments.

To have more reliable data for training and vali-

dation procedures in the experiments, sensor stations
with relatively low overall missing rate are prefera-
ble. Data from sensor station No. 8 is therefore se-
lected as the target data source to compare the per-
formance of the models. In the experiments, linear
interpolation is utilized to fill in the local missing da-
ta with a missing period lower than 10-unit time
stamps for training and validation dataset. Missing
records beyond this period are discarded when feed-
ing the training and validation data into the network
model in the learning procedure. Table 1 provides
the overview of the statistical characteristics of the
data information at the target sensor station after pre-
processing.

By considering the spatial correlation between
sensors, collected data at the stations that are sur-
rounded within approximately 5 meters is also in-
cluded in the input vector, namely, sensor No. 7,
9, and 10. The data preprocessing is carried out for
their sensory data. The sensor stations No. 53 and 54
are not considered to have spatial correlation with the
target sensor station due to the isolation caused by
the existence of the wall in between ( see Fig. 3
(a)). Given the prepared data, the whole dataset is
divided into 80% for training, 10% for validation,
and the remaining 10% as test set.

Adam optimizer is used in the training proce-
dure. The learning parameters are set as: batch size
= {64, 128, 256, 512}, training epoch = 50, di-
mension of the encoder hidden feature = {32, 64,
128, 256} , dimension of the decoder hidden feature
= {32, 64, 128, 256} . The root mean square error
(RMSE) and the mean absolute error ( MAE) are
utilized as the evaluation metrics to measure the pre-
diction performance of these methods. The two per-

formance metrics are defined as follows:

1 - :
RMSE=— 3, ()",

1 o~
MAE=— Y Ly,

where I denotes the total number of the predic-

ted variables.
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Let the time window size n represent the a-
mount of data acquired from a sensor for the time
window [ p+1,p+n | with no missing values, where
p is set to the index in the test set. Prediction is
based on a time window shifting mechanism where
for every shift the predicted value for the correspond-
ing parameter of interest will replace the nth element
in the time window, while eliminating the first ele-
ment. The total number of shifting steps in the test
procedure is determined by the period of missing da-
ta and equals to /, which is set to 500 in the experi-
ments. This procedure is repeated for all four moni-
tored parameters, and the obtained RMSE and MAE
values are shown in Table 2.

The complexity of the proposed model charac-
terizes the relations of the historical collections and

the surrounding measurements when making predic-

tions of the missing data. As given in Table 2, the
proposed model can provide superior prediction re-
sults on the Intel lab dataset for all four monitored
parameters. The values of the RMSE and MAE re-
sults for light intensity are higher for all four models
than those of other parameters. This is due to its high
standard deviation value demonstrated in Table 1. In
contrast, the prediction results of voltage are compa-
rably low due to its low standard deviation.

The proposed model considers the nonlinearity and
weighted impact from both temporal and spatial aspects
that may potentially have influence on the monitored
parameters in prediction. When large volumes of data
are missing in a sensing system for online monitoring,
the proposed RNN-encoder-decoder model is able to
generate a series of reliable imputed data of multiple

parameters over a long-term time scale.

Table 1 Statistical characteristics of the dataset at sensor station No. 8.

Monitored Parameters Min Max Mean Standard Deviation
Temperature( C ) 17.1660 26.5050 21.1364 2.3150
Humidity (%) 23.5990 46.3610 38.0215 4.6228

Light (Lux) 0.4600 1847.40 661.2896 730.4307
Voltage (V) 2.5822 2.7496 2.6554 0.0346

Table 2 Prediction performance of the compared models.

ARIMA NARX LSTM Proposed model
Monitored Parameters RMSE MAE RMSE MAE RMSE MAE RMSE MAE
Temperature( C) 1.7523 1.4119 1.4672 1.3189 1.17912 1.0625 0.9769 0.9446
Humidity (%) 3.2473 2.6115 2.1393 1.7875 1.4675 1.3177 1.0498 1.0038
Light (Lux) 360.7864  318.0221 319.3094 261.9225 276.8231 255.3528 258.4632 237.7896
Voltage (V) 0.0272 0.0230 0.0247 0.0234 0.0098 0.0092 0.0075 0.0071

5 Conclusion

This paper introduced an RNN-encoder-decoder
architecture with the capability of sequence-to-se-
quence learning, focusing on the data imputation
problem in sensory data from online monitoring sys-
tems. The proposed RNN model could effectively
handle historical time series and make predictions of
the upcoming data sequences of multiple target pa-

rameters simultaneously. The experimental results

demonstrated the superiority of the proposed RNN
model on an indoor sensing systems with multiple
monitored parameters. When generating the training
dataset in the experiments, the data records with the
missing items of any monitored parameters were dis-
carded. In the future, data records that are partially
missing will be investigated and integrated into the
training dataset. In addition, the proposed method
can be extended to handle more complex environ-

mental fields with dynamic changes.
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