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An Approach to Synthesize Diverse Underwater Image Dataset
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Abstract : Images that are taken underwater mostly present color shift with hazy effects due to the special property of water. Un-
derwater image enhancement methods are proposed to handle this issue. However, their enhancement results are only evaluated on
a small number of underwater images. The lack of a sufficiently large and diverse dataset for efficient evaluation of underwater
image enhancement methods provokes the present paper. The present paper proposes an organized method to synthesize diverse
underwater images, which can function as a benchmark dataset. The present synthesis is based on the underwater image formation
model, which describes the physical degradation process. The indoor RGB-D image dataset is used as the seed for underwater
style image generation. The ambient light is simulated based on the statistical mean value of real-world underwater images. Atten-
uation coefficients for diverse water types are carefully selected. Finally, in total 14490 underwater images of 10 water types are
synthesized. Based on the synthesized database, state-of-the-art image enhancement methods are appropriately evaluated. Besides,
the large diverse underwater image database is beneficial in the development of learning-based methods.
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Fig. 1 Two samples of undersea images

Underwater image enhancement methods are de- caused by light attenuation and light backscatter,
veloped to cope with the above-mentioned quality which will result in image color cast with hazy

degradation. Two major quality degradations are effects.
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Many pioneering approaches seek to handle this
problem. In the early stage, underwater image en-
hancement methods are mainly hardware-based. For
example, the backscatter was attempted to be re-
moved by polarization or the precise control of the
shutter gate of the camear *7.

Besides, since the image degradation underwa-
ter is similar to that in hazy scenes in part, many ap-
proaches are tailored based on the haze removal
methods, for example, the influential dark channel
prior "' | and its modifications """

Alternatively, deep learning has achieved great
success in many high-level computer vision tasks.
However, there are limited deep learning-based
methods for underwater image correction, compara-
tively. This is partly because of the lack of sufficient
data for network training ''*.

Besides, there also lacks a fair benchmark to e-
valuate the image enhancement methods, where
most methods only manage to test their performance
on certain monotonous images. In this case, the gen-
eralization ability could not be verified.

Thus, the motivation of the present paper for
proposing a benchmark underwater image dataset is
two-fold .

1) It can be used as the benchmark to make
comparisons with different underwater image en-

hancement methods sufficiently and fairly ;

sun

water surface

qc

camera

»

2) The benchmark can be utilized to train the
deep convolutional neural network, thus pushes the
research in this direction.

The present paper proposes a systematic and
general scheme to synthesize diverse underwater im-
ages. The underwater image simulation imitates the
image degradation process in water, which is based
on an underwater image formation model. There-
fore, in the present paper, first the image formation
process is studied, and the parameters used for im-
age generation are calculated and collected. Based on
the synthesized underwater database, the paper also
evaluates the state of the art methods for underwater
image enhancement.

2 Related Work

2.1 Image formation model

Many researchers have made attempts to model
the physical process of image formation. One of the
most widely used models in this community is the
Jaffe-McGlamery model """ | and the captured im-
age (total radiance received by the observer E, )

consists of the direct illumination E the forward

d

scattering £, , and the backscatter £, .
E,=E,+E +E,

The image formation process is depicted in

Fig. 2. Besides, due to the less impact of the forward

scattering quantitively, £, normally is excluded. To

-

direct transmission
back scattering

< forward scattering

suspending particle

Fig. 2 General view of the underwater image formation process.
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get a more explicit expression of Eq. (1), after-
ward, we would give more information about the
formation process.

Denote E(d,\) as the ambient light on a small
disk d, , the scattered radiance on the disk be ex-
pressed as''*

dL(z,A)=b(A)E(d,A)dz

where b(A) denote the scattering coefficient.

Based on Eq. (2), the radiance received at dis-
tance zdB(z,A) from the small disk on the sensor is
exponentially attenuated and can be formulated

dB(z,A) =dL(z,A)e P

where B(A) is the attenuation coefficient.

Mathematically integrating from 0 to z for Eq.
(3), the backscatter B(z,A) is obtained as:
b(A)E(d,N)

B(A)

When z is large enough, the backscatter can be

B(z,\) = (1 =P

expressed
b(A)E(d,A)
B(A)

Therefore, the total radiance as the summation

B*(A) =

of the exponential attenuated signal and the backscat-
ter can be expressed as
E, =E(d,A)e™™* + B*(A) (1 - eP™7)
Denote thep(A) and S,(A) as the object reflec-
tance spectrum and spectral response, the total radi-

ance from the object I can be expressed as

1o -B(M)z
1= ["S.(Mp(VEd,N) e dA +
K 7

)
if S(A)B™(A) (1 = e PNy dA
K I

where k denotes the pixel geometry in the cam-
era, and A,, A, are the lower and upper spectrum
bounds for integration, respectively.

More specially, the first term is also termed as

the scene radiance J,
J
Jo=— [ S0P E(d,N)dA
K
The backscatter sensed by the camera is

1 e
sz—f S.(A)B*dA
K i

Finally, the underwater image formation model
can be summarized as
[=JePM 4+ B*(1 =M ¢ e {r,g,b
Based on Eq. (10), we could find that the key
parameters are 8(A) , B and z, which also play an

important role in underwater image synthesis.

2.2 Existing underwater image database

Unlike images in the air, it is quite difficult to
get the ground-truth or reference images for under-
water scenes. Ideally, the ground-truth underwater
images should be captured when the water is re-
moved, which is nearly impossible for the ocean or
the sea scenarios.

Instead, the intuitive idea has been implemented
by some researchers in the controlled environment,
for example, in the man-made water tank. In [19],
the authors built a 1000L water tank with stones and
objects on the floor. Milk was added into the tank to
increase the water turbidity. In [20], the authors pro-
posed the OUC-VISION dataset with 4400 images for
salient object detection. A cube (1.5 m * 0.5 m *
1.5 m) was set up for image capturing with various
illumination and turbidity. Similarly, authors in [21]
captured 6240 images with the variation of lighting
condition, turbidity, and depth in a man-made tank
whose dimension was 1.5 m * 0.5 m * 1.5 m.

Although the methods mentioned above provide
several underwater-style images, however, the di-
versity is limited by the size of the water tank. As
shown in Eq. (10), both the attenuation and back-
scatter are dependent on the range or depth. Never-
theless, with the small-size man-made water tank,
the image could only be captured in a very short
range. Therefore, the short-range images may lose
the characteristics of the physical image degradation.

Alternatively, researchers have endeavored to
synthesize underwater images established on the
physical image formation model, given B , B.(A)
and the depth z. Nevertheless, there exist some limi-
tations in their parameter settings. For example, the
authors only vary the depth ranged from 0.5 m to
3min [22].In[10], the image depth was fixed at
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5 m. The limited depth range would result in a loss
of diversity. What’ s worse, the depth value was
randomly set for each pixel in the image in [ 10 ] and
[22], which would be inconsistent with the image
structure as well. In [ 23], the ambient light was ar-
bitrarily selected but the values for three color chan-
nels were used as the same. However, unlike the
ambient light in hazy scenarios, light is wavelength-
dependent attenuated underwater, resulting in differ-

ent light intensity in three color channels.
3 Our Method

In this section, we will present our systematic
scheme to synthesis the underwater image benchmark
dataset based on the image formation model. As dis-
cussed earlier, z, BY , B,(A) are the unknown key

parameters in the image formation model.

3.1 Depth z

To our knowledge, there lack theunderwater
images with ground-truth depth information. There-
fore, the indoor RGB-D dataset would be a good
choice, providing the actual depth information for
the RGB images. In the present paper, the NYU-V2

indoor dataset ‘* is utilized for underwater image
synthesis. This dataset provides 1449 indoor images
labeled with corresponding depth values, which are

in the range from 0 to 10 m.

3.2 Attenuation coefficients 8.( )

The attenuation coefficients are the summation
of the wave length-dependent attenuation and scatter-
ing coefficients in water, which are related to vari-
ous factors for instance the type of water, suspended
particles, and so on. Therefore, B,(A) should vary
with the wavelength as well as the type of water "**.

Jerlov et al. have classified water into the coast-
al type and oceanic type. Further, the oceanic water
can be classified into 5 types ( Type-I, Type-IA,
Type-IB, Type-II, Type-III) based on the clarity of
the water. The coastal water can be further classified
into five levels of turbidity ( Type-1C, Type-3C,
Type-5C, Type-7C, Type-9C). Besides, they pro-
vide the attenuation coefficients for different water
types with different wavelengths. The coefficients for
RGB color channels for all water types are listed in
Table 1.

[24]

Table 1 Attenuation coefficients of the 10 water types .

Type I 1A IB II 1 IC 3C 5C 7C 9C
Red 0.341 0.342 0.349 0.375 0.426 0.439 0.498 2.43 0.635 0.755

Green 0.049 0.0503  0.0572 0.129 0.121 0.187 0.315 0.73 0.494 0.777
Blue 0.021 0.0253  0.0325 0.110 0.139 0.240 0.400 0.65 0.693 1.240

The light absorption is simulated based on the
coefficients for all 10 types of water in Fig.3, where
the depth is ranged from O to 20 m. From Fig.3, we
could have the following observations. Around 5
types of water will become dark when the depth in-
creases to 10 m. As the depth range of the NYU-V2
dataset is from O to 10 m, the depth range is rela-
tively enough for diversity. Besides, Fig. 3 also veri-
fies that the limited depth range would fail to simu-

late diverse images.

3.3 Ambient light B

Although the underwater image formation model

3C

5C

©x

12

8 Depth(m)

Fig. 3 Simulation results for light absorption underwater.
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is analogous to that in the hazy scenario, one of the
major differences lies in that the wavelength-depend-
ent light absorption. Under this circumstance, the
ambient light for different color channels is different.

In the present paper, we would first calculate
the ambient light for a large number of underwater
images, and the ambient light is set based on the sta-
tistical mean value. The calculation method is based
on'®? for ambient light, and 3000 underwater images
downloaded from the Internet were adopted. The av-
erage for ambient light for three channels is: B =
0.6703 , B; =0.7807, = 0.7577.

To add dlver51ty, an addltlonal 5% variation is

L&

Depth image

5T

Indoor image

L

Type-1

Type-1II

Type-1C Type-3C

L'DIL'DI X [T

X B _' o |
ERETHETS

added to the mean value for image synthesis.

3.4 Synthesizing underwater images

In total, we have synthesized 14490 images and
1449 underwater-style images for eachwater type.
One sample is shown in Fig. 4. From Fig. 4, we
could find the synthesized images follow the physical
degradation process with the color cast and limited
visibility. More specifically, the degradation would
increase as the depth increase. For example, the syn-
thesized type-9C image appears hazier on the right
side compared to the left due to increased depth on

the right, which is consistent with our previous anal-

Type-IA Type-1B Type-I1

U El*'! )

Type-5C Type-7C

Fig. 4 One sample of the synthesized underwater images.

4 Methods Evaluation Results

Based on the generated benchmark images, we
can evaluate the state-of-the-art methods for under-
water image enhancement. The following image en-
hancement methods which are published in the top
conference or journals are compared: UVE ( pub-
lished in ICRA, 2017) **/ MBIE '*" (published in
ICRA, 2018), Fusion ' ( published in CVPR,
2012), UHL "“** ( published in BMVC, 2017),
WCID """ ( published in TIP, 2012) and DCP ‘*
(published in CVPR, 2009).

Concerning the evaluation criteria for image

quality, it is still an open problem to develop a good
and unified metric for image quality evaluation. In
the present paper, we adopt the full-reference image
metric; peak-signal-to-noise-ratio ( PSNR ) and
structural similarity index (SSIM) , which are wide-
ly used for image quality evaluation. For both met-
rics, a higher value indicates a more desirable out-
come.

The average value of PSNR and SSIM are re-
ported in Table 2 and Table 3, respectively. Consid-
ering the page limitation, only 5 water types are
presented in Fig. 5. From Fig. 5, we could find that
the fusion-based enhancement method '*' could give

the best visual pleasing results, as well as the highest
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PSNR and SSIM against all the other methods.
Table 2 PSNR results for the state of the art methods.

Method\Type 1 1A IB II 1II IC 3C 5C 7C 9C
UVE 15.3886 15.3996 15.4013 15.3451 15.0771 14.9807 14.4290 12.6667 12.6398 11.6589
MBIE 16.0667 16.0794 16.0866 16.1386 15.2471 16.2771 16.2385 12.8334 13.8970 11.1727
Fusion 20.6516  20.6316  20.5499 20.1954 19.4084 19.1473 17.8650 13.5206 14.1309 11.9211
WCID 11.6825 11.6638 11.6250 11.4551 11.0293 10.9091 10.1878  8.8672 8.0597 7.2613
UHL 13.7663 13.9279 13.8241 13.8062 14.0902 14.1346 14.1230 12.7527 14.0028 13.2602
DCP 13.6527 13.6537 13.6392 13.5804 13.4599 13.3482 13.1819 11.5328 14.4655 10.9678

Ground-truth Type-1 Type-III Type-3C Type-7C Type-9C

Ed LT B

T
=

UVE

MBIE

Fusion

WCID

UHL

DCP

Fig. 5 Methods evaluation of the proposed benchmark dataset.
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Table 3 SSIM results for the state of the art methods.

Method\Type I 1A IB 1I 111 IC 3C 5C 7C 9C
UVE 0.6028  0.6035  0.6013 0.5901 0.5623 0.5510  0.5000  0.2892 0.2539 0.1079
MBIE 0.5653  0.5670  0.5677  0.5744  0.5875  0.5943 0.6112  0.4235  0.3349 0.0222
Fusion 0.7489  0.7498  0.7493 0.7461 0.7351 0.7304  0.6960  0.4328  0.4114 0.2014
WCID 0.3606  0.3610  0.3606  0.3578  0.3476  0.3423  0.3072  0.1962 0.0353 0.0192
UHL 0.4079  0.4124  0.4094  0.4147  0.4106  0.4205  0.4257  0.2708  0.2756 0.1236
DCP 0.5274  0.5290  0.5294  0.5317  0.5363 0.5371 0.5461 0.3755  0.2550 0.0684
Besides, almost all methods could only handle mous underwater vehicles. In 2013 MTS/IEEE
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