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Abstract : For robot interaction control, the interaction force between the robot and the manipulated object or environment should

be monitored. Impedance control is a type of interaction control. Specifically, in impedance control, the dynamic relationship

between the interaction force and the resulting motion is controlled. In order to control the impedance of a mechanical system,

typically, the interaction force has to be sensed. Due to the inherent limitations of direct force sensing at the interaction site, in the

present work, the interaction force is observed using robust observers. In particular, to enhance the accuracy of impedance con-

trol, a first order sliding mode impedance controller is designed and incorporated in the present paper. Its advantage over position-

based interaction control algorithms is demonstrated through experimentation. Experimental results are given to show the effective-

ness of the proposed algorithms.
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1 Introduction

Besides motion control of a robot manipulator,
the control of the dynamic interaction when the ma-
nipulator is constrained by the interacting objects is
also an important problem in practice. Several algo-
rithms of interaction control have been proposed by

researchers in the past“*‘]

. Depending on whether
there is an explicit closed loop with respect to the
force tracking error, interaction control algorithms
can be classified into indirect interaction control
schemes and direct interaction force control schemes.
In hybrid force/motion control, the workspace is de-
composed into force controlled directions and motion
controlled directions'*’ . However, in practice, this
decomposition is difficult'”’. Impedance control as
an interaction control methodology was applied in
several past studies since the seminal work of Ho-
gan'®. The objective of impedance control is to con-
trol the dynamic relationship between the robot end-
effector motion and the interaction force during inter-
action. It is termed an indirect force control method-

ology since neither the motion nor the interaction

force is explicitly controlled. It has been proved to
be effective, particularly because it tends to mimic
manipulation by human hand, and has been used in
engineering applications such as parts assembly' ™.
The interaction force provides the most direct
information about the state of mechanical interaction.
In impedance control implementations, the interac-
tion force information is required to shape the imped-
ance function in the desired manner. However, accu-
rate interaction force information is not readily avail-
able in practical applications. Usually, to sense the
interaction force between a robot manipulator and an
interacted object, a force sensor is mounted in the
wrist. The sensed interaction force information has to
be calibrated and filtered before it is applied in the
impedance controller since the sensed interaction
force is an internal force at the robotic wrist rather
than the real interaction force between the robot ma-
nipulator end-effector and the interactedenviron-

ment’g’m 11-13]

. As pointed out' , the application of a
force sensor may introduce some unavoidable prob-

lems, such as sensing noise, limited bandwidth,
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self-varying properties due to temperature change,
and the difficulty of proper location of the force sen-
sor at the interaction site. Reconstructing the interac-
tion force by the use of estimation algorithms is pref-

erable for these reasons, and has been widely

d" B4 Much of such work assumed an accu-

use
rate dynamic model of the robot manipulator. Offline
identification algorithms for robot dynamics may be
used to identify the dynamic parameters. However,
the resulting accuracy is not satisfactory due to the
fact that the friction component in each joint is non-
linear and uncertain"*"*'.

As noted, the velocity information is required
in impedance control algorithms. Unfortunately, in
the robot manipulator under study, only a joint posi-
tion encoder is provided in each joint. The velocity
information that is obtained by differentiation is typi-
cally noisy and unacceptable in experimental imple-

mentations! "

. Simultaneous estimation of joint ve-
locity and external force is desirable. Recently, slid-
ing mode observer, which is a robust observation al-
gorithm, had found application in this field. A sec-
ond-order sliding mode observers was applied to esti-

mate both
29-31]

velocity and external interaction

force' . The estimated values were applied in a
sliding, mode-based impedance controller to guaran-
tee realization of the desired impedance. Experimen-
tal results were given to show the effectiveness of the
algorithm. In that work, however, the external inter-
action force estimation was obtained after passing
through a low-pass filter. The filter presents a
tradeoff between the smoothness and the time lag of
the reconstructed interaction force.

The present work is inspired by the early work
32-38]

presentedin’ . However, the present approach can
provide a more accurate interaction force estimation
while generating a velocity estimation as well, which
is required in impedance control algorithms. Robust
impedance shaping algorithms are designed in the
present paper using the reconstructed interaction
force. The structure of the rest of the paper is as fol-

lows. In Section 2, the robot dynamic model is ex-

pressed and identified. Simultaneous velocity and ex-
ternal force estimation are proposed in Section 3, u-
sing an adaptive high order sliding mode observer. In
Section 4, the robust impedance controller is devel-
oped, which uses the estimated velocity and the ex-
ternal interaction force. In Section 5 the advantage of
the proposed impedance control algorithm is demon-
strated by experimentally comparing it with other in-
teraction control algorithms. Concluding remarks are

given in the final section.

2 Problem Formulation

The platform that is used in the present work is
a commercial four-degree-of-freedom robot manipu-
lator called Whole Arm Manipulator ( WAM) , as
shown in Fig. 1. The first and the third joints are

fixed in order to simplify it as a planar two-link ma-

nipulator.

Fig. 1 (a) WAM; (b) Schematic representation of WAM.

The schematic representation of the simplified

two-link manipulator is given in Fig. 2.

Fig. 2 Schematic representation and coordinate
frame of the simplified two-link WAM.

The robot manipulator is equipped with joint
position encoders only. Unfortunately, there are no
force sensor and a joint tachometer, to sense the in-
teraction force and the joint velocity. Hence, observ-

ers are designed in the present work to estimate the
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interaction force and the joint velocity, simultane-
ously. It is found through validation experiments that
the manufacturer-provided dynamic parameters are
not accurate *’ .
3 Interaction Force Estimation
The joint space dynamic model of the robot ma-
nipulator is given by
M(q)§+C(q,4) §+Fyq+F sgn(§)+G(q)=
r=J'(q)F, (1)
where ,
g-joint position vector (2x1)
g-joint velocity vector (2x1)
g-joint acceleration vector (2x1)
M( q) -inertia matrix (2x2)
C(gq,q)-Coriolis and Centrifugal matrix (2x2)
F-viscous friction matrix (2x2)

F --Coulomb friction matrix ( diagonal2x2)

sgn(g)-2x1vector whose components are sign
functions of the joint velocity

G(q)-gravity vector (2x1)

T-joint actuator torque vector (2x1)

J(q)-Jacobian of the manipulator (2x2)

F ,-external interaction force vector (2x1)

In order to enhance the accuracy of interaction
force estimation, the dynamic parameters of the manip-
ulator are identified through experimental data. An off-
line dynamic parameter identification algorithm could
be used to obtain the dynamic parameters. However,
due to the uncertainty of the friction parameter in each
joint, the identified model could not accurately charac-
terize the dynamics of the manipulator.

A neural network with one hidden layer and the
back propagation algorithm is used in the present
work for parameter identification. Since the joint
torque residue calculation is based on the states of
two joints, the compensation torques for joint 1 and
joint 2 are considered simultaneously using one neu-
ral network, as shown in Fig.3.

Eight hidden layer nodes are used. Also,w; =
connection weight between the input layer and the

hidden layer; w; = connection weight between the

hidden layer and the output layer; AT, = torque com-

pensation for joint 1; and AT, = torque compensation

Interaction
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Fig. 3 The validation scheme of the interaction

force estimation.

The sigmoid function is used as the activation
unction, as given by
1
1+e™

(2)

o(x)=

The input to the neural network is the joint mo-
tion state, which is given by the corresponding joint
position g and velocity g. The joint acceleration g is
provided as well. The velocity and acceleration infor-
mation are reconstructed using the sliding mode-
based robust differentiator. The output of the neural
network is the torque difference between the actual
joint torques calculated using the joint actuator cur-
rent and the predicted joint torques. The neural net-
work is trained using the inputs and the correspond-
ing outputs. After training, it will act as a compensa-
tor to compensate for the torque difference that will
be used in the interaction force estimation algo-
rithms. The offline identified dynamic parameters to-
gether with the neural network-based compensator
are able to predict the joint torque accurately, as
shown in Fig. 4 and Fig. 5.

04 Joint 1 Torque Prediction Error

Prediction Error (Nm)
& )

Time (seconds)

Fig. 4 Joint 1 torque prediction error.
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Fig. 5 Joint 2 torque prediction error.

An interaction force estimation algorithm that u-
ses an adaptive high order sliding mode observer is
proposed in this section. It provides robust interac-
tion force estimation in the presence of measurement
noise. The dynamic model of the robot manipulator
as given in Eq. (1) is rewritten in the state-space
form now. Let x, =¢q, x,=q, and u=7. Then, the
joint space robot dynamic equation may be represen-
ted in the state-space form as,

X1 =Xy3

X, =f(t,x,, %, ,u) +E(t,x,,%, ,u) (3)

y=x

where ,

ftx,,x,,u)= _Mrl(xl) [C(x,,x,)x,+Fx,+
Fesgn(x,) +G(x,) —u]

E(t,x,,x,,u)=-M"(x,) [AT+J'(X,)F,];

x,€R? is the joint position encoder reading; x,e
R® is the joint velocity vector of the manipulator;
f(t,x,,x,,u)€R’ represents the nominal dynamics of
the mechanical system; and £ (¢, x,,x,,u) is the
combination of the model error-induced terms AT
(reconstructed from the neural network-based com-
pensator) and the external interaction force F,. The
representations of f(t,x,,x,,u)€eR” and £(t,x,,x,,

u) are given by

S, 3 0)= fl“’x"x””)} (4)
S (1,2, ,%,,u)
E(t,x,,x,,u)
g(taxlaxzau)_|:§2<t’x1’x2’u):| (5>

The non-adaptive high order sliding mode ob-
server has been implemented' ™ to reconstruct the

external disturbance. The limitation of this algorithm

is that it is extremely difficult to determine the ob-
server gains to guarantee the convergence of the ob-
server. Adaptive sliding mode-based differentiators
have been proposed **'. The observer gains could
be tuned on line to guarantee the convergence of the
robust differentiator.

Inspired by the work in [34-35], an adaptive
sliding mode observer is designed here to reconstruct
the interaction force. It is given by Eq. (6)-Eq. (8).
The observer adaption laws are designed based on

the Lyapunov method, as presented by

Xy =Xy Ay, ‘xli_fcli sign(x,,—x,;)
+hy, (X),=%x);) (6)

‘2/3

‘1/2

kzi:]ci(xl , X, Ju) A, ‘Xli_jcm' Sig”(xli_fcm)'l'

kli(;cli_jc%)—’-ii (7)
21i=)\0isign(ili—)%2i) (8)
where \,;, \,; and \; are gains to be determined
to guarantee the convergence of the estimation error.
For the derivation simplicity, a matrix represen-
tation is used for the observer described by the fol-

lowing equations ;

X, =x,+A, | x,—x, [P

sign(x,—x,) +k,(x,—x,)
(9)

‘ VzSign< ):Cl —x, ) +k,

):Cz =f(x,,x, ,u)+)11 ‘5-61_562
(;Cl_fcz)"'é (10)
2=A,sign( x,—x,) (11)
The variables in Eq. (9) -Eq. (11) are in fact

vector representations of the scalars in Eq. (6) -Eq.

(8). The adaption laws are given as

/:\2=s2 |5, | sign(s,) (12)
/;\1=s1 |5, |Vsign(s,) (13)
/;\0=slisign(s1)dt (14)
S, =X, X, (15)
5, =X, %, (16)

The proof of convergence of this sliding mode
observer is given in terms of the homogeneity of dif-
ferential inclusions and the Lyapunov approach. Af-

ter convergence, it is able to accurately reconstruct
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the interaction force as well as the velocity informa-
tion. The results of the interaction force reconstruc-

tion for two directions are given in Fig. 6 and Fig. 7.
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Fig. 6 Force estimation error (x direction).
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Fig. 7 Force estimation error (z direction).

4 Robust Impedance Control

Robust impedance controllers are designed in
this section. The interaction force reconstructed by
the observer is used in impedance shaping. To show
the advantage of the robust impedance controller that
is designed here, impedance control accuracy is de-
fined. Sliding mode-based impedance controller is

formulated after that.

4.1 Cartesian Space Trajectory Selection

To show the effectiveness of impedance control
as an interaction control algorithm, a common Carte-
sian space trajectory is planned for the end-effector
to follow. The end-effector will interact with the ob-
stacle by following this trajectory. The derivatives of
this reference trajectory are directly used in the con-
trol algorithms. Hence, it is desirable to have smooth
reference trajectories for both velocity and accelera-
tion.

In the reference trajectory selection, the specific

application should also be considered. In the present
project of robotic homecare, the robot end-effector is
commanded to follow a reference trajectory to come
in contact with the human body. The initial Cartesian
space position of the robot end-effector is (-0.
04691,0.1193 ). The interacted object is located at
(0.08,0.6) in the Cartesian space. After reaching
the object, the end-effector is made to exert some
periodic motion on the object.

Taking all the factors discussed above into con-
sideration, the reference trajectories are divided into
two phases. The switching between the two phases
happens at t=2.0 sec. In the first phase, the end-ef-
fector in the Cartesian space is commanded to move
to some adjacent region of the designated position.
When the end-effector is in the designated location,
it is commanded to execute a desired periodical mo-
tion. Since there are six known conditions ( initial
position, initial velocity, initial acceleration, final
position, final velocity, and final acceleration) in
phase 1, a fifth-order polynomial is used to describe
the trajectory in this phase.

For the x direction,with x(0)=-0.4691, x(0)=
0, x(0)=0, x(2)=0.1, x(2)=0, x(2)=0 the
reference trajectory determined as

x(1)=0.1067+£°=0.5335+1'+0.7114.- £ 04691 ,

€[ 0,2] (17)

Similarly, the reference trajectory for thez di-
rection is determined as

z(1)=10.0651-£—0.3381-1'+0.4759-£'-1193,

€[ 0,2] (18)

After determining the phase 1 polynomial trajec-
tory, the velocity and acceleration at =2 sec are
known as well.

There are three known conditions for phase 2. A
sinusoidal waveform is used to describe the periodic
motion in both directions. However, there should be
four known conditions in order to completely de-
scribe a sinusoidal signal. One can assign any of
these four to a specified value, in order to have a
closed form solution. In the z direction, it is reason-

able to set the amplitude of the sinusoidal wave as
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0.1. For the x direction, the position is assumed to
be the constant location 0.1.
Then, the sinusoidal waveforms for the x and z
directions, when te[ 2.0,10], are determined as
x(1)=0.1 (19)
z(#)=0.1sin(1.272¢-1.8780) +0.5382  (20)
The designed Cartesian space trajectories are
shown in Fig. 8. The corresponding joint space posi-
tion trajectories are shown in Fig. 9. It is seen from
the joint space reference trajectories that the position
of joint 2 will never become 0 or 7w, which means
the manipulator will not be in the singularity config-
urations if the trajectory tracking performance is

good.

08 Cartesian Space Reference Trajectory (Position)

Position (m)
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Fig. 8 Cartesian space reference trajectories

( for interaction control) .

Joint Space Reference Trajectory (Position)

Position (rad)
o

250 1 2 3 4 5 6 7 8 9 10
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Fig. 9 Joint space reference trajectories

(for interaction control).

4.2 Impedance Control Accuracy
The accuracy of impedance control corresponds

to the extent to which the ideal impedance model is

realized. This is discussed here, particularly to com-
pare the performance of different impedance control
algorithms that are proposed. The desired impedance

model is described by

M,(X-X,)+B,(X-X,)+K,(X-X,)=F, (21)
where

M ,-desired inertia matrix (2X2)

B ,-desired damping matrix (2X2)

K ,-desired stiffness matrix (2X2)s
X-Cartesian space actual position vector (2x1)

X ,-Cartesian space desired position vector (2 X

1)

F _-estimated external interaction force vector (2X
1)

Let X=X—-X,. Then Eq. (21) can be rewritten
as

M, X+B,X+K,X-F. =0 (22)

Define the following matrix variable

1,=M X+B X+K X~F, (23)

If I,=diag(0,0) , then the desired impedance is
realized.

It is noticed that the estimated interaction forces
have some residue with respect to the measured ones.
This is unavoidable no matter what type of system i-
dentification algorithm is used to identify the dynam-

ic model of the manipulator.

4.3 Robust Impedance Control

A sliding surface is defined as

s=j)‘M;; CI(7)dr (24)

The finite-time convergent adaptive high-order
sliding mode observer that has been proposed in Sec-
tion 4 is used here for the estimation of the external
interaction force and velocity. Since the observed

states are used, the matrix variable in Eq. (23) is

redefined as
I,=M,(X,~X,)+B,(X-X,)+K,(X-X,)=F, (25)
where,

Xz—Cartesian space estimated velocity vector (2x1)

5(1-Canesian space estimated position vector (2x1)
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Xz-CarteSian space estimated acceleration vector
(2x1)

They may be obtained from the adaptive high-
order sliding mode observer as proposed in Section
4, using the forward kinematic relationship. Also,
these variables may be directly reconstructed from
the Cartesian space version of this adaptive high or-
der sliding mode observer.

The sliding surface should be a function of the
system states. In the state-space representation of the
robot manipulator, the state variables should be posi-
tion and velocity. The acceleration is not a state in
the state-space representation. The sliding variable is
represented in the integral form given by

s o 5
s=|:s };([)‘M;-I(T)dT:O (26)
2

The derivative of this sliding surface is given as
§=M ) -I(7)=X-X+M !B (X,-X,) +
M /K(X,~X,)-M /F,, (27)
Substituting the equation for the external inter-
action force observer into Eq. (27), we have
$=M [ (X\)F.=M (X H(X, X,)+),
\Xl—Xz \]/2-sign(Xl—X2)+K1(Xl—Xl)+Z—Xd+
M;Jle<5(2_j(d)+M ;Ile(j(l _Xd)_M ;11Fe (28)
The control law, which drives the system states

onto this manifold, is given by
F.=H(X, X,)-M(X)\, | X,=X, |V* -sign
(X,=X,)-MJ(X,)K,(X,~X,)-M(X,) Z+
M (X)X, =M (X, )M | B,(X,~X,)~-M(X,)

MK (X,~X,)+M (X, )M JF,-M(X,) K,
-sign(s) (29)

K = {kg’l } (30
g kgz )

where, k>0, k,,>0 are parameters to be tuned

to guarantee the stabilizing feature of this controller.

This control law will lead to the following rep-
resentation of s

s=-K,-sign(s) (31)

Define

Ky =min(k,, , k,,) (32)
The finite time convergence of this controller
may be proved by using the Lyapunov function giv-
en by
V= sts= sl (33)
Taking the time derivative of V along the trajec-
tories of the system, we have
V=STS=—ST-Kg-sign(s)=
—k,, s, -sign(s,) —k,,s, sign(s,)=
—kgy |5y =k |5, <
ka5 1+ 15, D= ko 151, (34)
In view of the real vector norms given in Eq.
(35), and using them in the derivatives of the Lya-
punov function, we have Eq. (36) for the derivative

of the Lyapunov function

HSHQSHSH1 (35)
VS_kminHsng_kmianHz (36>

Eq. (36) can be further simplified as
V=—/2k_ V" (37)

The stability of the plant under the proposed im-
pedance controller is easy to verify. The finite-time
convergence is further proved here, which is an im-
portant feature of the proposed controller.

Integrating both sides of Eq. (37) over the time
interval [0,t] we get

V(1) ==/2k,, t+V"*(0) (38)

Thus, V (t) reaches zero in finite time T,

bounded by

T < _ﬁ:m( 0) (39)

Note that a faster convergence can be realized

min

by increasing the value of k. However, the side-
effect of this increase is the increased magnitude of
the discontinuous term in the control input described
by Eq. (30). Chattering in this case will become
more problematic. This results in a tradeoff between
the convergence rate and the side-effect of chatte-
ring. The impedance control results are shown in
Fig.10-Fig.11.
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05 Interaction Force under Impedance Control (x direction)
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Fig. 10 Interaction Force (x direction with SMC-based

impedance control algorithms).

05 Impedance Control Error under SMC
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Fig. 11 Impedance control accuracy ( with SMC-based

impedance control algorithms).

5 Comparison with Other Interaction
Control Algorithms

Two other interaction control algorithms are
given in this section and are compared with the ro-

bust impedance controller as proposed in Section 4.

5.1 Inverse Dynamics-based Impedance Control
According to the Cartesian space dynamic mod-

el and the desired impedance model, the torque

command to be sent to the joint actuator is given by
m=[J"(q)+M(q)J(q) "M | ]F ,+C(q,q4) 4+
F, -sign(q)+F,-q+G(q)+M(q)J(q) "' X,~
M(q)J(q)"[M B, (J(q)G=X,)+M |K,

(X(q)=X,) 1+M()J() "I (q)q  (40)
where, X(g) is the Cartesian space position of
the manipulator end-effector, as calculated by the
forward kinematics equation. Joint space adaptive
high-order sliding mode observer is used here to sim-
ultaneously estimate the joint velocity and the inter-

action force.

The impedance control results are given in Fig.
12-Fig. 13. When compared with the sliding mode-
based impedance controller, it is observed that the
impedance control accuracy is worse. In the initial
phase, the impedance control error is large. Sliding
mode-based impedance controller is able to limit the

impedance control error within a small range.

0.5 Interaction Force under Impedance Control (x direction)
.5
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=25
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Fig. 12 Interaction Force (x direction with inverse

dynamics-based impedance control algorithms).

Impedance Control Error under Inverse Dynamics

N)

Impedance Control Error

5 10 15 20 25 30
Time (seconds)

Fig. 13 Impedance control accuracy ( with inverse

dynamics-based impedance control algorithms).

5.2 Interaction Control through Position Control

Interaction force can be controlled through ex-
clusive position control approaches. Then, the inter-
action force is taken as a disturbance. The position
control system calculates the desired actuator torque
so that the reference trajectory is tracked. It may
generate excessive interaction force during interac-
tion, which has to be avoided.

If the interaction force has to be modulated, the
mechanical properties of the environment have to be
accurately known. However, the mechanical proper-

ties of the environment are difficult to obtain. It is
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shown that an excessive interaction force may be
present when pure position control strategies are used
in interaction control. This will serve as the control
group to show the advantage of impedance control
when it is used as the interaction control strategy.
The Cartesian space inverse dynamics-based
trajectory tracking controller is used here. This con-

trol algorithm is given by

T=M(q)J"(q)[-T(q) q+X,K,(X,~X) +K,
(X,~X) 1+C(q,q) g+F,-sign(q) +F,-q+
G(q)+]'(q)F, (41)
After simplification, the trajectory tracking

problem can be described by

X=X 4K, (X-X,)+K,(X~-X,)=0 (42)

Here K, and K are the corresponding propor-
tional and derivative gains. It is seen that in this
case, the interaction control problem is transformed
into a pure trajectory tracking scheme, which means
the controller renders the manipulator infinitely stiff.
Then, the external interaction force is considered as
the external disturbance to be rejected by the trajec-
tory tracking algorithm. It is observed from Fig. 14
that the interaction force is increasing, and the sys-
tem appears unstable. It follows that interaction con-

trol through pure position control is not practical.

Interaction Force (x direction)

0 el L O L T R U I U R I )

AR
MR

Interaction Force (N)
<

0 5 10 15 20 25 30
Time (seconds)

Fig. 14 Interaction force under pure position

control (x direction).

6 Conclusion
Impedance control is an indirect force control

algorithm. In this paper it was used as an approach

of interaction control. Interaction force and velocity
of the manipulator are required in impedance control.
However, force sensor has inherent limitations,
which make its use in interaction control somewhat
impractical. For these reasons, an adaptive high-or-
der sliding mode observer was proposed to simulta-
neously estimate the external interaction force and
velocity. The estimated interaction force and velocity
were used in the impedance control algorithms. A
sliding mode impedance controller was proposed to
shape the impedance of the robot manipulator. This
impedance controller was shown to outperform the
conventional inverse dynamics-based impedance con-
troller in terms of the impedance control accuracy.
Also, impedance control was compared with pure
position control-based interaction control to show the

advantage of the former.
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