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Minimal Realization of Linear Graph Models for
Multi-physics Systems
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Abstract ;: An engineering system may consist of several different types of components, belonging to such physical “domains” as
mechanical, electrical, fluid, and thermal. It is termed a multi-domain (or multi-physics) system. The present paper concerns the
use of linear graphs (LGs) to generate a minimal model for a multi-physics system. A state-space model has to be a minimal real-
ization. Specifically, the number of state variables in the model should be the minimum number that can completely represent the
dynamic state of the system. This choice is not straightforward. Initially, state variables are assigned to all the energy-storage ele-
ments of the system. However, some of the energy storage elements may not be independent, and then some of the chosen state
variables will be redundant. An approach is presented in the paper, with illustrative examples in the mixed fluid-mechanical do-
mains, to illustrate a way to recognize dependent energy storage elements and thereby obtain a minimal state-space model. System
analysis in the frequency domain is known to be more convenient than in the time domain, mainly because the relevant operations
are algebraic rather than differential. For achieving this objective, the state space model has to be converted into a transfer func-
tion. The direct way is to first convert the state-space model into the input-output differential equation, and then substitute the time
derivative by the Laplace variable. This approach is shown in the paper. The same result can be obtained through the transfer func-
tion linear graph (TF LG) of the system. In a multi-physics system, first the physical domains have to be converted into an e-
quivalent single domain ( preferably, the output domain of the system) , when using the method of TFLG. This procedure is illus-
trated as well, in the present paper.
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1 Introduction A systematic, unified, and integrated approach
An engineering dynamic system, which is the is desirable for developing an analytical model, par-
focus of the present paper, may consist of several ticularly a state-space model, of an engineering dy-

[9]

namic system . The present paper uses the ap-

different physical types of components, belonging to
proach of linear graphs for modeling a multi-physics

such physical “ domains" as mechanical, electrical
b b
[9, 14, 15]

system in this manner . This can be done in

fluid, and thermal. It is termed a multi-domain ( or . . ]
multi-physics ) system. Modeling of dynamic sys- both t%le tl_me domain and the fr'equ'ency (%omaln.
tems is applicable in a wide range of disciplines and Modeling in the frequency domain s particularly

(2] convenient and useful. First, the linear graph (LG)

applications including sociology "', education %', ) ) ] ) )
biomedical engincering ' process engincering "' 1.s converted into a multl—domal'n .transfer—funcflon
linear graphs ( TF LGs). Then, it is converted into

; Le] ; [7]
electrical power systems -, and robotics “**. There an equivalent single domain TF LG, which is ana-

are many approaches for modelling and engineering lyzed to obtain the transfer-function model.

. . . [3'9]
dynamic system. They include linear graphs ™, A state-space model has to be a minimal reali-

19l . .
bond graphs , state-machine models or discrete- zation. Specifically, the number of state variables

1) Jogic-based models ‘'

[13]

system models "
[12]

’

, empiri- used in the model should be the minimum number

cal models and so on that can completely represent the dynamic state of
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the system. This choice is not straightforward. Ini-
tially, state variables are assigned to all the energy-
storage elements of the system. However, some of
the energy storage elements in the system may not be
independent, and then some of the chosen state vari-
ables will be redundant. It is not always easy to
know which energy storage elements are dependent,
and then, we may end of with redundant state varia-
bles. Several ways exist to recognize the presence of
dependent energy storage elements and thereby avoid
redundant state variables. One approach is to use the

concepts of graph tree '’

. Another approach is pres-
ented in the present paper, through illustrative exam-
ples in the mixed fluid-mechanical domains.

System analysis in the frequency domain is
known to be more convenient than in the time do-
main, mainly because the relevant operations are al-
gebraic rather than differential. For achieving this
objective, the state space model has to be converted
in a transfer function. The direct way is to first con-
vert the state-space model into the corresponding in-
put-output differential equation, and then substitute
the time derivative by the Laplace variable. This ap-
proach is shown first. The same result can be ob-
tained through the transfer function linear graph ( TF
LG) of the system. When using the method of
TFLG in a multi-physics system, first the physical
domains have to be converted into an equivalent sin-
gle domain ( preferably, the output domain of the
system ). This procedure is illustrated as well, in the

present paper.

2 Series-connected Capacitors

If two components are connected in series, it is
known that their through-variables are common (i.
e., equal) and the across-variables add. A physical-
ly-realizable fluid-mechanical ( or, hydro-mechani-
cal) system is presented in this section, which has
two capacitors connected in series.

Consider a fluid capacitor ( Capacitance C, )
due to the gravity head of an incompressible liquid

and another capacitor ( Capacitance C, ) due to the

flexibility of the container of an incompressible lig-

uid, integrated together, as shown in Fig. 1.

Light piston

(Area = .4)\(

Spring | ,
force — h—h )= 4,

Incompressible

hiquid
Fluid volume

flowrate 2
o

Fig. 1 Two series capacitors in a fluid-mechanical device.

Now it is shown that for this arrangement, the
fluid volume flow rate () is common and the pres-
sures of the two capacitors ( P, and P, ) add. In the
system, i = liquid height, and P, =pgh , wherep =
mass density of the liquid. Also,
dh A dP,

=A— ="
¢ dt pg di

(1)

where, A =area of the flexible wall ( spring-

loaded piston ). Hence,
C,—— =0 (2)

. A
with C, = —.
P8

Next, spring force = k(h — h,) , where h, =
liquid height when the spring is relaxed. Hence, the
k(h = hy)

pressure on the flexible wall, P, = — a1 This

AP,k dh _ k dQ

gives — = — — = — — _ Then, we have,
dt A dt A* dt
c dP, 3
=0 (3)
A2
with C, = e From (2) and (3) it is clear that

for the two capacitors, the volume flow rate () is the

same and the pressures P, and P, are additive. In par-

dP, 1
ticular, (2) and (3) can be written as, — o —0
de C,
a Lo, which gives L(p, +P,)
and — = — whic ives — ) =
dt c.’ & "t

1 1 1
( + ) Q = —Q . Then, in the combined sys-
c, C, C

eq
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tem, the overall pressure drop is P, + P, with an e-

quivalent fluid capacitance C,, given by,
L1t "
¢, ¢ G

This is the governing equation for the series connec-

tion of capacitors.

Note . The two capacitors ( energy storage elements

are not independent in this system, and two separate

state variables should not be used to represent them.

Specifically, a single state variable, for example,

representing C,,, should be used.

3 Redundant State Variables

In a systematic, integrated, and unified proce-
dure for developing the state-space model of a multi-
physics system, leading to a unique model, each en-
ergy storage element is assigned a state variable. If
there are dependent energy-storage elements, as in
the example of Section 2, that will resultant in re-
dundant state variables and a non-minimal state-
space realization. It follows that, dependent energy
storage elements have to be identified and the corre-
sponding redundant state variables have to be elimi-
nated. The present section provides an example to il-
lustrate this procedure.

Consider the multi-physics system consisting of
both mechanical components and fluid components,
shown in Fig. 2. A pump of pressure P,(¢) , which
is a pressure source, pumps liquid into a uniform
tank of area of cross-section A, through a pipe of
circular cross-section. The pressure ripples in the lig-
uid flow of the pipe are reduced before entering the
tank,, by means of an energy absorber consisting of a
small fluid tank of area of cross-section a and a
spring-loaded piston of mass m, stiffness k, and vis-
cous damping constant b. Also given, /, = fluid iner-
tance in the pipe up to the energy absorber ( passive
pressure controller) , R, = fluid resistance in the pipe
up to the energy absorber, and p = mass density of
the liquid. First, an oriented linear graph is presented
for the system. Using the linear graph, systematical-

ly, a complete state space model is developed for the

system, with the following state variables; Q =
volume flow rate of the liquid in the pipe before
reaching the energy absorber, P, = pressure differ-
ence of the liquid column in the energy absorber tank
(not the pressure at the bottom of the liquid col-
umn ), v = upward velocity of the piston, f, = com-
pressive force of the resisting spring attached to the
piston, and P, = pressure at the bottom of the main
tank. Also, system output = H = liquid level in the
main tank. For analytical convenience, the bulk
modulus of the liquid and the flexibility of the pipes

and the tanks are neglected.

Atmosphenic
Alr
Spung force
sating Xnod —
Pressur )! on®
=i } g Ve Main Tank .
(enerzy absorver) | ° 1 Xesostica srea= .t P
5 m ) ,E
N-socticn sea=q —t— n-E
Py
Exit Valve
A Fhud Inertor (Closed)

Flud Resastor
Pump

(Pressure source)

— Liqud sump

Fig. 2 A liquid pumping system.

The linear graph of the system is shown in Fig.
3. This is a “gyrator-coupled” system where the sub-
system in the fluid domain is linked with the subsys-

tem in the mechanical domain (the output domain )

by a gyrator with parameter a, as shown.

Fig. 3 Linear graph of the system.

The systematic procedure for developing the
state-space model is presented now.

State-space Shell



INSTRUMENTATION, Vol 6. No 4, December 2019

75

CyPy = Qy

c,P, =0,

1,0, =P,

my = f

Ji =k,

Other Constitutive Equations;
Pp = R0,

Sy = by,

Q.

a Fluid gyrator

=—aP

m m

m

Node Equations ;

Q. = Qr = 0(useless) ;

0 -0,=0;0,-0,-0,=0;0, -0,
=0; ~f, ~f-f/i =/, =0

Loop Equations

P -°P,-P, -P,=0;P,-P, P,
-v,=0

=050, —v=0;0-9v, =030

Eliminate the auxiliary variables
0,=0,-0,=0,-0,=0,~av, =0, —~av
Q,=0, =av,, =av
P, =P -P,-P,=P -P,-R(Q,
=P =Py =ROQ, f=~f, ~fi ~fy =aP, [, =
bv, =a(P, —P,) - f, — bv
v, =V
PH
Output H = —
P8
State vector x = [PH P, Q, v ﬂ] !
Input vector u = [P,]
Output vector y = [H]
State-space Model ;

x =Ax + Bu
y =Cx + Du
with,

A=

) | }
0 0 (:pgj (_az_apgj 0
¢, A c, A
a
0 0 0 — = 0
(c,z ”g)
1 R
-— 0 -z 0 0
If [f
b 1
o _a _b 1
m m m m
00 0 k 0 |
.
0
1 1
B=|— ,c=[0000},0=[0]
If Pg
0
L 0]

It is seen that the 2" row of the system matrix
(A) is directly proportional to the 5" row ( through a
constant multiplier) . This tells us that the state varia-
bles x, and x, are not independent. Since the state-
space model must contain the least number of state
variables that can completely represent the dynamics
of the system, it is necessary to eliminate one of
these two state variables. There are many ways to
perform tis elimination, but the most direct and sim-
plest way is given now. Before doing this, note that
the system order ( which is equal to the order of the
state vector) is equal to the number of “independ-
ent” energy storage elements in the system. Through
physical examination ( see Section 2) it should be
clear that the fluid capacitor formed by the water col-
umn of the pressure damper ( gravitational fluid ca-
pacitance ) and the spring ( of stiffness k) in the
pressure damper are not independent. Since these
two energy storage elements are not independent,
two separate state variables should not be used to re-
present that subsystem, in the final state-space mod-
el. All these observations indicate that the state-space
model (5" order) that was obtained before is not the

correct final result, and it has to be reduced to a 4"
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order model. This is accomplished now.

The 2™ and the 5™ state equations are

X, = X
2 4
Ch
x5 = kx,
th, ¢, =P8 H =
with, C, . Hence, x; X,

k .
Note: The units of — are mz, and hence the
Pg

two state variables are physically compatible as well.
It follows that the proper state-space model

should have only the first four state equations, with
k

x, in the 4" state equation replaced by p—gxz. This
gives the proper (4" order) state-space model is as
follows.

o

P8

"=[P,P, Q]

Inputu = P (t) ; Output H =

State vector x = [x, x, x; x,]

Input vectoru = [u] = [P(1)]

PH
Output vectory = [y] = | —
P8

State-space Model .

x =Ax + Bu

y =Cx + Du

The corresponding model matrices are;
A=

_ 1 _
I =
¢, A ¢, A
0 0 0 (“— j
c =
1 .
- O _ﬁ O
I I
k b
L @) 0 -
L m pg m
o
0
B=|1 ,c:L 00 O};D:[O]
T g
;
L 0]

4 Equivalent Transfer Function Model

System analysis in the frequency domain is
known to be more convenient than in the time do-
main, mainly because the relevant operations are al-
gebraic rather than differential. For achieving this
objective, the state space model has to be converted
in a transfer function, which can be conveniently ac-
complished through a transfer function linear graph
(TF LG). An example of a multi-physics system
similar (but not identical) to that in Section 3, is
used to illustrate the pertinent procedure. The exam-
ple system is fluid-mechanical, and in the LG, this
coupling is represented by a gyrator, essentially giv-
ing a gyrator-coupled system .

The procedure of determining the time-domain
input-output model (i.e., the input-output differenti-
al equation) from the state-space model, is illustra-
ted as well. Then, the system transfer function is ob-
tained conveniently. Another way to determine the
system transfer function is to use the approach of
transfer function linear graph (TF LG). In that pro-
cedure, the multi-domain system has to be converted
into an equivalent single-domain TF LG. This proce-
dure is also illustrated using the same example sys-
tem. Among the two physical domains ( fluid and
mechanical) of the example system, the fluid do-
main is converted into an equivalent mechanical do-
main (the output domain of the considered system )
before determining the transfer function of the sys-
tem.

Consider the multi-physics system consisting of
both mechanical components and fluid components,
as shown in Fig. 4. A pump of pressure P, (¢) ,
which is a pressure source, pumps water into a uni-
form horizontal cylinder of area of cross-section A,
which serves as the hydraulic actuator that drives a
mechanical load. The combined mass of the actuator
piston and the mechanical load is m, the resisting
stiffness of the mechanical load is k£, and the com-
bined viscous damping constant of the actuator piston
and the mechanical load is b. The water is pumped

through a short pipe of circular cross-section. Note:
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Assume that the water is incompressible. The pres-
sure ripples in the water flow of the pipe are reduced
before entering the actuator, by means of an energy
absorber ( hydraulic capacitor) consisting of a small
fluid tank of area of cross-section A, and a spring-
loaded, light ( massless) and smooth (no energy

dissipation) piston with the resisting stiffness k. .

Spring force
setting knob

Veut to azmosphare
Pressute ripple Smooth.
diapat masless
(Energy abrotbar) PR
AT puten
'] J" 2, Hydnulic  —e's Opea to
iz Actustor semosphare
0
[029] , A
J Liquid inector ) Valve g I
partially Viscous Nechanical
7,00 Pump (pressure 1012¢0) opsusd) Dazzpizz () .:o::“

Water sump
Fig. 4 Water pumping system for a hydraulic actuator.

Note . This stiffness is adjustable using a nut, as
shown, but in this example, assume it to be a con-
stant. The water flow into the actuator cylinder can
be adjusted by means of a valve, as shown. It offers
a fluid resistance R. Even though this is also adjusta-
ble, assume that it is a constant in the present exam-
ple. This is the only notable fluid resistance that is
present in the entire system (i.e., neglect any other
hydraulic resistances). Given, I = fluid inertance in
the pipe from the pump up to the energy absorber
(passive pressure controller). Neglect any other flu-
id inertances. Also, p = mass density of the water,
and g = acceleration due to gravity.

First, a complete linear graph for the system is
presented. Using the linear graph, a complete state
space model is developed for the system. The fol-
lowing state variables are used: v,, = velocity of the
mechanical load (and also of the actuator piston) , f,
= spring force of the mechanical load ( attached to
the actuator piston ), f, = compressive force of the
spring of the energy absorber, (), = volume flow rate
of the water in the pipe before reaching the energy
absorber, and P, = pressure difference of the water

column (of height A, ) in the energy absorber tank

(not the pressure at the bottom of this water col-
umn). Note; P, = pgh, . System output = v, = ve-
locity of the load (also, of the actuator piston). In
this example, the bulk modulus of water and the
flexibility of the pipes, the actuator cylinder and the
absorber tank. are neglected.

From the state-space model, the input-output
differential equation (input = P () , output = v,
is obtained. From that equation, the system transfer
function is obtained. Next, the TF LG corresponding
to the LG is obtained. Then it is reduced into a TF
LG that is entirely in the mechanical domain. From
that, systematically the system transfer function is
obtained. It is shown that his result is identical to
that obtained before.

The linear graph of the system is shown in Fig.
5(a).

0P

FAY

Fig. 5(a)
The state-space model is developed now.

Linear graph of the system.

State-space Shell ;

mvm :ﬁn
fi =k,

f;:kcvﬁ
101 =P,
CPC =0Q,

A,
Note. C = —
pg

Other Constitutive Equations;



78 Clarence W. DE SILVA et al; Minimal Realization of Linear Graph Models for Multi-physics Systems

Jy = by,
Py = ROy
, =

A Fluid gyrator A
i == AP,
e

A, Fluid gyrator A,

f=—-AP

Node Equations
Q, = Q; =0(useless) ; Q; = Qx = Q¢ =0;
Q.- 0=0;
120500~ 0
=0; ~fi=fu~/i = /i =0
Loop Equations ;
-P(t) +P, +P,+P=0;
-P, -P,+P,+P=0;
-v+o,=0; —v, +y
=0; -v,+v,=0; -9, +v, =0

Eliminate auxiliary variables
m :_.f] _.fb _f]r :APZ - bvb _.fk
=A(-Pp+P,+P)-bv, - f,

1
= (_ RQ, + P, _z‘ij —bv, —f,

1
=A(— RAv,, + P, + fJ -bv, - f,

A
== (AR +b)v, =, + . + AP,
kv, = kv,

k, k, k,
kv, =kv= ZQ = IQ(; = X( Q- Qh)

k,
= j( Q, — Av,)) [from above result

kA k
== 1 v, + /TQI

c c

c

1
Py==P =Py +P(1)=f =P, + P(1)

1
== PP

0.=0, -0y =0, — Av, [ from above
Output = v,,
Vector-matrix form:
State vectorx = [v,, f, f. O/ Pc] !
Input vectoru = [u] = [P ()]
Output vectory = [y] = [v, ]
State-space Model

x =Ax + Bu

y=Cx + Du
with
A=
[WR+b) 1A 4]
m m  mA, m
k 0 0 0 0
kA k,
- 0 — 0
An Ac ’
1 1
0 0 -— 0 -—
IA, 1
A 1
- — 0 0 — 0
L ¢ ¢ _

© ~|—~ o o o

From the system matrix (A) it is clear that its
3" row is directly proportional to the 5" row
(through a constant multiplier ). This tells that the
state variables x, and x; are not independent. Since
the state-space model must contain the least number
of state variables that completely represent the dy-
namics of the system, it is necessary to eliminate
one of these two state variables. As in Section 3,
through physical examination it should be clear that
the fluid capacitor formed by the water column of
the pressure damper ( gravitational fluid capacitance)
and the spring ( of stiffness k,) in the pressure

damper are not independent. Hence, the state-space
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model (5" order) that was obtained before, has to
be reduced to a 4" order model. This is accomplished
now.

From the gyrator equations ( with A, ), we
have,

AP=-f

Differentiate and substitute some previous equa-
tions ;

AP == =] =ko =ho =k

A2
We have k—P =(Q

This result tells us that the equivalent fluid ca-

pacitance of the spring element in the pressure damp-
2

eris: C. = k—r From Fig. 5(a) it is clear that this

c
c

capacitor is in “series” with the actual fluid capaci-
tor (of capacitance C ( with common flow and addi-
tive pressure difference). The combined, equivalent

fluid capacitance C, of these two series elements is

. 1 1 1 pg k.
b _— =t — = — 4+ —
given by, C cteTa Ty

e c ¢

. Hence,

(5)

The corresponding linear graph is shown in Fig.
5(b).

Fig. 5(b) LG of the equivalent system with
independent energy storage elements.
Now, the state-space model corresponding to this
linear graph is obtained, which is the correct state-
space model.

State-space Shell ;

79
mo,, = f,
fk = kv,
10, =P,
C(‘Pe = QE
AZ
Note: C, = ———— . The variables P, and Q,
- pgA tk,

are as in Fig. 5(b).

Other Constitutive Equations ;

Sy = by,
Py =RQ,
L0
LA Fluid gyrator A
fi == AP,

Node Equations

Q, = Q, =0(useless) ; Q, — Q; — Q, =0;
0= 0Qi=05 ~fi ~f, ~f, ~£,=0

Loop Equations

-P(t) +P,+P,=0; -P,-P, +P, =0,
-v, +v,=0; —v, +v, =0; —v, +v, =0

Eliminate auxiliary variables:
w="Si Sy S =AP by, —
=A(-P,+P,) —bv, - f
=A(=RQy +P,) ~bv, - f,

1
= RQ, + P, + Af() —bv, - f,

c

S

o

—

(-

1
A(— RAv, + P, + f(j -bv, - f,
(-

RAHm + PC + ﬁj - bUm _ﬂ

¢

S

A
== (AzR + b)Um -fi * /TfL + AP,

kv, = kv,
P,=—P,+P(1)
Q.=0Q, - Q =0Q, - Av,[ as before
Output = v,
Vector-matrix form of the state-space model;

State vector x = [x, x, x; x,] "= (v, f. Q,P.]

Input vectoru = [u] = [P,(t)]

T
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Output vectory = [y] = [v,]
State-space Model

x =Ax + Bu

y=Cx + Du

The corresponding model matrices are;

R+ 1 0 A

m m m

k 0 0 0
A= 1]
0 0 0 -—

I

A 1

-2 0 — 0

L C" C“ .
.C=[1 0 0 0];D=1I[0]

™
I
o ~|—= o o

Now, the input-output differential equation cor-
responding to the state-space model, is determined.

The state equations may be written as;
7'51 =apx; tapx, tayx,
Xy = ayx,
Xy = agx, + byu

Xy = A%y T apx

with,
(AR +b) 1 A
Ay == 7 5@ =T T Ay T
m m m
1 A
ay =k; ay :_7; Ay _a; Qg3 =
1 A
—3 by, =—and C, =
C. - pgA, tk,
The state equations may be further rewritten as:
Y= any +apn, +ayx, (6)
552 = ayy (7)
Xy = agx, + byu (8)
Xy = agy +oagy, (9)

We have to express these 4 equations as a single

equation in # and y only. This done as follows:

4(6)

di sy =any Fapayy +ay(a,y + a3%3)

(10)

= (‘112‘121 ta,a,)y +any +aaun,
=ay tapy tayx,

Ap = Apay t ayay

as).

- Xy = a34(a4,y + a43x3) + bSi‘
Substitute (10) :

—(y —a,y —a,y) =
a

2

34043

304y T (}’ - a4y - a“).f) + bau

2

Rearrange .
Yy - ayy ~— (al +a34a43)j7 +
apayany + (a0, — ayaza,)y = abiu

k_f‘z+(_1)1_
m  mC, 1)c,

e

Also, we have:

@ T 30, ==

LI S
m mC, IC,
(A*R +b) 1 (A’R +b)
A11A34 Q43 = T _TQ =TCe

A1 A3pQy3 — ArQ304 =
-2 a8
m  mC, Ic,) mC\ I c,)
S R S S
IC\m mC, mC,) miC
A 1 A

aby = =

“mC, I mCI
Note . At this stage, it is a good idea to check the

physical units of each of these terms and verify that
they are consistent. If not, that means, the result has

€rrors.
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Substitute the expressions for the coefficients;
d'y (AR +b) &y
di* m dr’
(AR +b) dy . k _ A du

mIC, dt mIC” ~mCIdt

e e

This gives the input-output differential equa-

tion,
4 3

d 4
mIC, "L + 1C (AR +b) “ L +
dt dit
&L d
(KIC, + AT +m) =2 + (AR +b)  +
dt dt

V.(s)

(k A? ljdzy
R Iy it A
m mC, IC,) ds

du

ky =A o

As expected, a 4" order input-output differenti-

al equation model is obtained for this 4" order sys-

tem ( having 4 independent energy storage ele-
ments ) .

The corresponding system transfer function is

obtained by simply substituting the time-derivative

operation by the Laplace variable s

As

P (s) - mlC,s* + IC.(A’R + b)s’ + (kIC, + A’I + m)s” + (A’R +b)s + k

This result is verified by using the method of
TF LG, next.

The transfer-function linear graph (TF LG) of
the system in Fig. 5(b) is shown in Fig. 5(c).
R

P(s)

Fig. 5(c¢)

of the fluid-mechanical system.

The Transfer-function linear graph

The fluid domain is now converted into

the Thevenin form [9], as shown in Fig. 5(d).

Further reduction of this LG is not required. By fol-
lowing the usual procedure for Thevenin circuit de-
velopment, we have,

Equivalent (open-circuit) pressure source

PG) 1 PG
Py = Lo T
(4 O UGarD

The potential divider method is used in writing

this equation.

Equivalent fluid impedance

Is

fR=— " +R 12
([C852+1) (12)

STT7777 M= }

Fig. 5(d)

domain in the Thevenin form.

The TF LG with the fluid

Here, after killing (i.e., shorting) the fluid
source, the resulting two parallel branches have been
combined and then the series branch is added.

Next, the fluid domain is converted into an e-
quivalent mechanical domain, through the gyrator
(this is a gyrator-couple fluid-mechanical system ).
The equivalent TF LG shown in Fig. 5(e) is ob-
tained. This equivalent system is entirely in the me-

chanical domain.
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The domain conversion of the gyrator-coupled

M) = 2
— M metht =

two-domain system is carried using the standard re-
Fig. 5(e) The equivalent TF LG entirely in

the mechanical domain.

sult of converting a Thevenin segment in one domain
into an equivalent Thevenin segment in the other do-
main ),

In the converted segment, the equivalent veloci-
M
ty source is; V,(s) = ?Pm(s) and the
2

M
series mobility in that segment is: M, = A

e

1
In the present problem, M = 1

Substitute (11) and (v12):

V)= P(s) =

P(s)

I
A(ICS +1) x | ———— +R
(ICs™ + 1)

P(s)
AlIs + R(ICs* + 1) ]
v 1 _
oz, Is -
© A———— +R
(1C652+1)
(ICs* +1)

A*[Is + R(IC,s> + 1)]
In Fig. 5(e), the three parallel branches of m,
b, and k can be combined to give the mobility,

1

M(s) :ms +b+k/s

Applying potential division to Fig. 5(e), we

get
M V.(s)
Vﬂl = x V(’(S> e ———
M, +M M/M + 1
P(s) 1

AP (s)

X
AlIs + R(ICs* + 1) ] [(ICesz +1)(ms + b+ k/s)

A [Is + R(IC,s* + 1)]

(ICs + 1) (ms +b + k/s) + A*[Is + R(ICs* + 1) ] -
AsP (s)

(ICs + 1) (ms> +bs + k) + A%[Is + R(IC.s> + 1)]
AsP ()

mICs* + (IC,b + A’RIC,)s’ + (m + KIC, + A’I)s> + (b + A’R)s + k

Hence, the system transfer function is

m

As

P(s) mICs' + (IC,b + A’RIC,)s* + (m + kIC, + A°I)s* + (b + A’R)s + k

This transfer function is identical to what was

obtained previously, by the time-domain approach.

5 Conclusions

The present paper concerned the use of linear
graphs to generate a minimal model for a multi-phys-
ics system. The number of state variables used in a
state-space model should be the minimum number

that can completely represent the dynamic state of

the system. The paper presented an approach to rec-
ognize redundant state variables, and through that
obtain a minimal state-space model. Initially, state
variables were assigned to all the energy-storage ele-
ments of the system. Next, a way to recognize the
dependent energy storage elements and thereby re-
move the redundant state variables was presented.
System analysis in the frequency domain is known to

be more convenient than in the time domain, mainly

y
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because the relevant operations are algebraic rather
than differential. For achieving this objective, the
system transfer function is needed. The direct way to
convert a state space model into the corresponding
input-output differential equation, and thereby obtain
the system transfer function was presented. It was
shown that the same result could be obtained through
the transfer function linear graph ( TF LG) of the
system. In a multi-physics system, first the physical
domains have to be converted into an equivalent sin-
gle domain ( preferably, the output domain of the
system ) , when using the method of TFLG. This
procedure was illustrated as well, in the present pa-

per.
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