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Abstract : Due to the rapid development in the petroleum industry, the leakage detection of crude oil transmission pipes has be-
come an increasingly crucial issue. At present, oil plants at home and abroad mostly use manual inspection method for detection.
This traditional method is not only inefficient but also labor-intensive. The present paper proposes a novel convolutional neural
network (CNN) architecture for automatic leakage level assessment of crude oil transmission pipes. An experimental setup is de-
veloped, where a visible camera and a thermal imaging camera are used to collect image data and analyze various leakage condi-
tions. Specifically, images are collected from various pipes with no leaking and different leaking states. Apart from images from
existing pipelines, images are collected from the experimental setup with different types of joints to simulate leakage conditions in
the real world. The main contributions of the present paper are, developing a convolutional neural network to classify the informa-
tion in red-green-blue (RGB) and thermal images, development of the experimental setup, conducting leakage experiments, and
analyzing the data using the developed approach. By successfully combining the two types of images, the proposed method is able

to achieve a higher classification accuracy, compared to other methods that use RGB images or thermal images alone. Especially,

compared with the method that uses thermal images only, the accuracy increases from about 91% to over 96%.
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1 Introduction

Use of a pipeline network to transport oil over
long distance has many advantages such as capability
of handling high volumes of oil, high security, low
cost, stable, and continuous transportation process.
As a result, it has become the preferred choice of
crude oil transportation. However, with the develop-
ment of the pipeline transportation industry, pipeline
leakage accidents have become somewhat common
and serious, and is a problem that needs to be solved
urgently. These accidents in pipelines can be caused
by aging, wear, corrosion or deliberate human dam-
age. Pipeline leakage not only causes economic los-
ses and environmental pollution, but also leads to se-
rious threat of human health and safety. Therefore,
fast and automated leakage detection in pipelines is
of great significance to reduce the occurrence of

leakage accidents.

At present, leakage detection in the crude oil
transportation industry is commonly done through

human labor'".

Human inspectors walk alongside
the transmission pipelines to visually check the pipes
and record the problems. This approach can be haz-
ardous, slow, and inaccurate. To reduce the use of
human labor and to improve the detection efficiency,
automating the detection process has become a grow-
ing research area in recent years. Especially with the
rapid development of deep learning technologies,
many studies have used deep neural networks to con-

1."*" developed a

duct leakage detection. Sinha et a
fuzzy artificial neural network ( ANN)-based pipe-
line reliability assessment method that uses eight
pipeline parameters as the input variables. The output
variable is the probability of failure. Francois Ayello
et al. "' proposed a pipeline risk assessment model

based on Bayesian network, which can calculate
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many types of risk, separately. The work of Gi-
useppe Acciani et al. * provided information for a
neural network classifier by using the correlation co-
efficient between the x, y and z components of the
simulated guided wave displacement reflected by the
defect on a pipe, to evaluate the size of the defect on
the pipe that is tested. Xiao Rui et al. - proposed an
integrated leak detection method using acoustic sig-
nals based on wavelet transform and Support Vector
Machine (SVM). In the work of Guzman et al. '*! |
a fuzzy logic-based model was designed to minimize
the uncertainty of evaluating pipeline risks. In order
to solve the problem of low efficiency of manual de-
tection of drain pipes, Zijin Zhang et al. "” proposed
a defect detection method based on the Faster-RCNN
algorithm. The most of such work focuses on using
extracted features from images instead of the raw im-
ages. Based on the observation that the crude oil in
the pipe is heated with steam before transportation, it
is believed that thermal images will provide more in-

formation than RGB images *"’.

Therefore, the
present paper places more attention on combining
RGB information and thermal information for leak-
age detection.

The present paper designs a CNN architec-

(1 that extracts features from raw RGB and ther-

ture
mal images and processes the two types of images
together. The innovation of the present neural net-
work is the scoring method that incorporates both
visible light information and thermal information.
This paper is organized into the following com-
ponents: In the present section ( Section 1) the
background of the work is outlined. In Section 2, the
underlying theoretical analysis and the basic struc-
tures of CNN are presented. In Section 3, the experi-
mental system, the process of data acquisition, and
image preprocessing are described. Then, in Section
4., the proposed CNN architecture is presented in de-
tail. The obtained experimental results and their anal-
ysis are discussed in Section 5 of the paper. Conclu-

ding remarks are given in Section 6.

2 Theoretical Analysis

As an effective network structure, CNN has
been widely used to solve practical problems inclu-
ding image recognition and classification. With the
characteristics of local connection and weight sha-
ring, the result of CNN is invariant with respect to
small translation, scaling, and rotation disturbances
in the input dataset. The structure of a CNN is gener-
ally a combination of the convolutional layer, the
pooling layer' '’
CNN model is trained using labeled data, by the

13]

and the fully connected layer. The

backpropagation algorithm'

2.1 Convolutional layer

Convolutional layer, which contains multiple
convolution kernels, is generally used to extract fea-
tures from the input data. The input and the output of
each convolutional layer are sets of arrays called fea-
ture maps. Each pixel in a feature map is the weigh-
ted average of the pixels in a small area of the input
image, and the weight is determined by the value of

"I Convolution can be con-

the convolution kernel'
sidered as a special linear operation. This operation
can be expressed by,
o — S i (-1 0]
X! —F(ZW TRXTV b)) (1)

i=1
where, [ represents the [-th layer of the net-
work, i represents the i-th input feature map, j re-

Y represents

presents the j-th output feature map, X;
the j-th feature map of the /-th layer in the network,
WU( " represents the j-th kernel of the I-th layer in the
network , X,'"" represents the i-th feature map of the
(I-1)-th layer of the network, bj“) represents the
bias term of the /-th layer, (X) represents the convolu-
tion operation, and F represents the nonlinear activa-
tion function.

The activation function introduces nonlinearity
into a neural network, which improves the nonlinear
modeling ability of the network. Typical activation
functions include sigmoid function, tanh function,
and rectified linear unit (ReLu). ReLu function is a-

dopted in the present paper because of its superior
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performance compared to other activation functions.
The ReLu is presented by the function,
F(x) = max(0,x) (2)

2.2 Pooling layer
In addition to the convolutional layer, another
important part in a CNN is the pooling layer, which
processes the feature mapping results obtained by the
convolution operation. The pooling kernel commonly
has different size, with a stride greater than 1. The
pooling operation reduces the computation amount
while retaining the main features of the data. It pre-
vents over-fitting and improves the generalization a-
bility of the CNN model effectively. Commonly,
pooling operations include max pooling and average
pooling. In many studies, max pooling is used, as
given by,
y = maxh,wi,j = lx, ; (3)
where, h, w represent the height and the width
of the pooling kernel, respectively, and x, ; repre-
sents the value of an overlap area between a feature

map and a pooling kernel.

2.3 Fully connected layer

In the structure of CNN, the convolutional layer
and the pooling layer perform feature extraction and
dimensionality reduction, respectively. The fully
connected layer and the softmax layer are followed at
the end of the CNN, generally. These two types of
layers integrate local information and map the extrac-

"

ted features into the " sample mark space", which
plays the role of " classifier" in the network. The
softmax layer often appears as the last layer of the
CNN, after several fully connected layers. The num-

ber of nodes in the last layer is the same as the num-

ber of target ( classified) categories. The softmax
layer maps the output of the fully connected layer to
the probability of each category (a value between 0-
1). The probability can be calculated by,
Pt =j1 20 W) =
e(Wl(/,) ) Ty CiD

k 6([(/{/,) ) Toxy GO

(Ee(wl(L) ) Ty GiD ) -1 x (4)

=1

e(Wk(L) ) Ty G

where, 1) e {1, 2, ..., k| represents the
number of target categories, x'’’ e R"represents the
output of the fully connected layer, and W'"’ repre-

sents the weight of the softmax classifier.

2.4 Backpropagation algorithm

The working mechanism of CNN mainly con-
sists of two parts: forward propagation and backward
propagation. Forward propagation is used to predict
the label of the input data, and the backward propa-
gation updates parameters according to the value cal-
culated by gradient function of the loss function, for
each parameter.

Supervised learning is performed by CNN, u-
sing gradient descent. Although the formula for cal-
culating the gradient is simple and straightforward,
numerically solving this formula may require exces-
sive computation, for example, for a deep network
with millions of parameters. However, backpropaga-
tion algorithm takes the result of the loss function as
input, and follows the chain rules to adopt a specific
order of operations to calculate the gradient for each
parameter. In the present paper, cross entropy loss

function is adopted. The cost function is defined as,

J(W,b) =~ %[Z [y« loghy (x ) + (1 =y ) + log(1 = Fyy(x? ) ) 1] (5)

where, W represents the weight, J(W,b) re-
presents the loss function, m is the number of target
categories, y'’’ represents the real label of the i-th
sample, and F, (x'")) is the predicted value of the

network.

After calculating the gradient, each parameter is up-
dated along the direction of the gradient. In this
way, the result of the loss function achieves the fas-
test decrease. The weight and the bias are updated

according to,
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. . F)
W =W -y —J(W,b
naW]( ,b)
5 (6)
b(j) :b(j-l) _ W.b
n—abJ( ,b)

where, 7 is the learning rate, and W and b re-
present the weight and the bias, respectively, which

need to be updated along with the training process.
3 Data Acquisition

3.1 Experimental setup

Because of the joint defects and the stress con-
centration phenomenon, which is caused by a sud-
den cross sectional area change in a pipeline junc-
tion, leakage tends to occur in such area. In order to
simulate the leakage conditions in the real world, an
experimental platform is built in the lab. The experi-
mental platform is designed with a fire hydrant with
flange joint and a combined pipeline with two types
of typical pipe joints: welded joint and threaded
joint. For the purpose of obtaining temperature infor-
mation and visible light information, NC160 thermal
imaging camera ( Shanghai Nobel) and X2 visible
camera ( Shenzhen electronic technology) are adopt-

ed in the present experimental setup. The developed

experimental platform is shown in Fig. 1.

V'Yemed jointe

Fig. 1 Experimental platform.

3.2 Raw data acquisition
In order to verify the effectiveness of the pro-
posed method, we collected 1010 RGB images and

1010 thermal images. Four leak conditions of the

crude oil transmission pipelines are tested in the ex-
periments, including the normal condition ( no
leak ) , and three leak conditions ( large leak, moder-
ate leak, minor leak ). During the data collection
process, the oil is poured at the pipe joints. The
poured oil has different temperature and volume,
which represent various leak conditions. Then the
visible light camera and the thermal camera are
placed at different poses to take the images simulta-
neously from different viewpoints. The experiment

parameters are given in Table 1.

Table 1 Leakage classification and parameters.

Leakage Temperature ~ Volume Amount
type of oil (C)  ofoil (ml) of images
Large 70 10~15 172+172
Moderate 70 6~8 220+220
Minor 25 2~3 253+253
No - 0 365+365

To extract the crude oil from wells and to im-
prove the fluidity, the crude oil is commonly heated
to around 60 ~80 degrees Celsius' " using steam, in
practice. A water bath heating device is used to heat
oil to the specified temperature, to achieve this con-
dition in the experiments. The oil temperature of a
large leak and a moderate leak is controlled at a-
round 70 degrees Celsius because of the large leak-
age amount that is present under these conditions, in
the experiments. Considering that in a minor leak the
area of leak is relatively small and the leakage vol-
ume is small as well, the oil temperature will be
greatly affected by the temperature of the outer pipe-
line wall and the external environment. The leaked
oil flows slowly along the pipe wall and cools rapid-
ly in a few seconds, so the oil temperature is con-
trolled at 25 degrees Celsius for the minor leak con-
dition. In addition, the temperature of the outer pipe-
line wall is heated to around 35 degrees Celsius dur-
ing the experiment. Because of the physical similari-
ty between engine oil and crude oil, engine oil is

used instead of crude oil in the experiments.
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3.3 Data preprocessing

Many factors can influence the performance of
the CNN model, of which the most important one is
the size of the dataset. Due to the limited experimen-
tal setup, the dataset consisting of raw images is not
large enough to train a robust CNN model. There-
fore, an enhancement method is used to argument
the original dataset to obtain sufficient number of im-
ages in the preprocessing stage. In the present paper,
the data enhancement techniques include image up-
and-down inversion, saturation adjustment, and con-
trast adjustment.

5050 RGB images and 5050 thermal images, of
which 860X2 images correspond to large leak; 1100
X2 images correspond to moderate leak; 1265X2 im-
ages correspond to minor leak, and 1825X2 images
correspond to no leak, consist of the experimental
dataset ( X2 represents RGB and thermal images) . In
the present study, 60% of the dataset is used for the
training of the CNN model, 20% of the dataset is
used for the validation, and 20% is used for testing
the trained network. The training dataset is used to
train the CNN model by minimizing the error be-
tween the predicted value and the real value. The
validation dataset is used to select the appropriate
model by adjusting hyperparameters of the model,
and the testing dataset is used to evaluate the gener-
alization ability of the model and verify the validity
of the method. Details of each category are shown in
Table 2.

Table 2 The categories of the dataset.

Leakage . .

Label Train Validate Test Total
type
Large 0 516 172 172 860
Moderate 1 660 220 220 1100
Minor 2 759 253 253 1265
No 3 1095 365 365 1825
Total - 3030 1010 1010 5050

During the preprocessing stage, both RGB and
thermal images are cropped into a size of 200x200.

Then the RGB images and the thermal images are

stitched together ( RGB image on the left, thermal
image on the right) to make a jointed image of size
200%x400. The purpose of this step is to ensure that
the RGB batch and the thermal batch are in one-to-
one correspondence, and to be able to “fuse” the

two types of images within the CNN.

4 CNN Model Structure Design

The present paper proposes a novel method
based on CNN to automatically evaluate the leakage
level of crude oil transmission pipelines. Compared
to traditional methods, the present method has a
strong ability for automated feature extraction, and
only needs simple image data, which are taken from
the exterior of the pipeline using an RGB camera and
a thermal imaging camera. In the scoring stage of the
proposed network, the features of the RGB image
and the thermal image are combined together, form-
ing a comprehensive standard to classify the leakage
level corresponding to an input image. The flow
chart of this process is shown in Fig. 2.

In order to realize the one-to-one correspon-
dence of RGB images and thermal images in the ini-
tial stage, a batch with jointed images is produced.
Then the jointed images are cropped into two images
at the end of the batch-creating stage, and the
cropped images (one RGB image and one thermal
image) are given to different networks for training.
This operation makes sure that each label accurately
corresponds to RGB images and thermal images. Fig.
3 shows the detailed structure of the CNN.

Input images are convoluted by the convolution
kernel F1 of size 7x7 with step 1X1, and the number
of the output feature map is 64. The ReLu function is
placed behind the output feature map of the convolu-
tional layer. The purpose of this active function is to
increase the nonlinearity of the network. Behind the
convolutional layer is the max pooling layer with the
pooling kernel of size 2x2, which reduces the di-
mension of the feature map and the parameters. This
is followed by a sequential block of convolutional

layers and max pooling layers. The differences be-
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tween the blocks are the size and the number of con-

volutional kernels and max pooling kernels. Fig. 4

depicts the feature map extracted from each convolu-

tional layer. Feature maps of the RGB image are giv-

en in the first row and the feature maps of the ther-

mal image are given in the second row.

When all convolution and pooling operations

are completed, the flattening operation is performed.

The output after the flattening operation is used as

the input to the fully connected layer. In the fully

connected layer, the dropout'

16]

method is adopted

Pipe Leakage

!

to solve the overfitting problem ( dropout is an oper-
ation that randomly discards the unit data of the fully
connected layer in some proportion, during train-
ing). The number of neurons in the fully connected
layer is 192, 96 and 4. In the scoring stage of the
proposed network, the outputs from the RGB and
the thermal network of the last fully connected layer
are added to realize the fusion of the two types of in-
formation. The detailed parameters of the convolu-
tional layers of the RGB network and the thermal

network are give in Table 3.

Data Acquisition

and Preprocessing

!

J
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Validation Dataset

Testing Dataset
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Fig. 2 Flow chart of the system.
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Fig. 3 The CNN structure.
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Fig. 4 Feature map.

Table 3 Parameters of the thermal and RGB network.

Thermal Network RGB Network

Out-
. Output Fil-
Filters Step put Step
map ters
map
Convl_1 7x7 64 1x1 7x7 64 1x1
Convl_2 7x7 64 1x1  7x7 64 1x1
Conv2_1 5x%5 128 1x1 5x5 128 1x1
Conv2_2 5X5 128 1x1 5x5 128 1x1
Conv3 3x3 256 1X1  3%x3 256 1x1
Conv4 3x3 256 1x1 3x3 512 1x1
Conv5_1 3x3 512 1x1 3x3 512 1x1
Conv5_2 3x3 512 1x1 - - -

5 Analysis of Experimental Data
Tensorflow 1.9.0 with the CUDA 9.0 and cudnn
7.3.1 libraries are adopted as the experimental envi-
ronment. The graphics card used for training is a
NVIDIA GTX 1080TI. During the training process,
Adam is chosen as an adaptive learning rate optimi-
zer to update each parameter. The RGB network and
the thermal network are trained at the same time. In
the output stage, the network adds the final output of
the two types of networks as the final score of the in-

put image, and this score is used for the classifica-

tion of the leak level. The hyperparameters in the
proposed CNN are adjusted according to the per-
formance of the validation dataset. The learning rate
is set to 0.0001, and the value of dropout is set to 0.
5. The validation dataset plays an important role in
determining the final CNN model. At the time of tes-
ting, the entire testing dataset is used to verify the
performance the trained CNN model, and the classi-
fication accuracy of each leak condition is recorded.

In the task of pipeline leak assessment, an ap-
propriate CNN model is selected through the training
dataset and the verification dataset. Fig. 5 depicts the
loss curve and accuracy curve in the training and the
validation stages ( Red curve represents the training
process, and the blue curve represents the validation
process) . After the model selecton, the testing data-
set is used to evaluate the performance of the CNN
model.

Table 4 shows the accuracy of the method that
uses the RGB images or the thermal images separate-
ly, and the accuracy of the RGB _Thermal fusion
method. It can be seen that the thermal method has
the lowest accuracy, only about 91%. The RGB _
Thermal fusion method has the best performance,

whose accuracy is nearly 97%.
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Fig. 5 (a) Loss of RGB network, (b) Loss of thermal network, (c) Accuracy of RGB network,

(d) Accuracy of thermal network, (e) Accuracy of fusion method.

Table 4 Accuracy of the RGB, thermal,

and fusion methods.

Method RGB Thermal Fusion

Accuracy (%) 94.06 91.19 96.63

In order to verify the superiority of the RGB _
Thermal fusion method for evaluation of the four
leak conditions further, the accuracy of the four leak
categories is determined, as shown in Fig. 6. It is
observed that the accuracy of the RGB_Thermal fu-
sion method in the moderator leak, minor leak, and
no leak conditions is significantly higher than that of
the RGB method or the thermal method. In the clas-
sification of the large leak images, the RGB_Ther-
mal fusion method also reaches 95%. From a com-
prehensive perspective, the fusion method is more
effective than the other two methods.

The next step is to demonstrate results of the
four leakage conditions, by using the corresponding
confusion matrix. As shown in Fig. 7, about 96% of
the large leakage condition and 97% of the minor

leakage condition are correctly classified by the pro-

posed scheme. However, about 4% of the large
leakage condition is misclassified as moderate leak-
age. About 95% of the moderate leakage and 98% of
the no leakage condition are correctly detected by the
method, but about 4% of the moderate leakage con-
dition is misclassified as large leakage. This result
verifies that the model has high accuracy and robust-
ness, it can accurately classify the leakage level in

crude oil transportation pipelines.

Accuracy(%)
100
A 9781
98 0851 eon 9723 )
96 - 9526 sis¢
puclil 8435

94
92 91.7
50 8955 90.12
88 82.73
86
84
82

largeleak moderate leak minor leak no leak

M RGB W Thermal M RGB_Thermal Fusion

Fig. 6 Accuracy levels of four leakages

using different methods.
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Normalized confusion matrix
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0.2

no

0.0
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Predicted label
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Fig. 7 Confusion matrix.

6 Conclusion

This paper proposed a CNN-based method to e-
valuate the leakage level of crude oil transmission
pipes. The features automatically extracted from
RGB images and thermal images were fused in the
scoring stage of the proposed CNN model. By com-
bining the RGB and thermal images, the method
fully exploited the advantages of fusing the RGB im-
ages and thermal images. Experimental results veri-
fied that this fusion method outperformed other
methods that use RGB images or thermal images a-

lone.
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