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Abstract : This paper addresses the application of quantum entanglement and cryptography for automation and control of dynamic
systems. A dynamic system is a system where the rates of changes of its state variables are not negligible. Quantum entanglement
is realized by the Spontaneous Parametric Down-conversion process. Two entangled autonomous systems exhibit correlated behav-
ior without any classical communication in between them due to the quantum entanglement phenomenon. Specifically, the behav-
ior of a system, Bob, at a distance, is correlated with a corresponding system, Alice. In an automation scenario, the “Bob Ro-

’

bot” is entangled with the “Alice Robot” in performing autonomous tasks without any classical connection between them. Quan-
tum cryptography is a capability that allows guaranteed security. Such capabilities can be implemented in control of autonomous
mechanical systems where, for instance, an “Alice Autonomous System” can control a “Bob Autonomous System” for applica-
tions of automation and robotics. The applications of quantum technologies to mechanical systems, at a scale larger than the atom-
istic scale, for control and automation, is a novel contribution of this paper. Notably, the feedback control transfer function of an
integrated classical dynamic system and a quantum state is proposed.
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Quantum Autonomy.

1 Introduction

In this Quantum era, quantum technologies are
making the biggest and the most promising impacts
in developing new technologies towards improving
the quality of life. The applications of quantum tech-
nologies in our future everyday lives are inevitable
due to their many unmatched advantages. By integra-
ting the unmatched possibilities of quantum suprema-
cy with engineering applications, such interdiscipli-
nary quantum and engineering systems can push the
engineering boundaries beyond any classical tech-
nique. However, currently, the most focus on the
application of quantum technologies in engineering
systems is on quantum computing and related areas

(For example, see '"*'). Until recently, a Quan-

tum Robot is referred to as a mobile autonomous
platform that is equipped with a quantum computer,
as its processing system ( See for example, "% ). Al-
so, the advantages of quantum technologies have not
been realized and introduced at the macro scale. Ver-
y few references can be found on the application of
quantum capabilities to actual mechanical systems.
The applications of quantum technologies in advan-
cing the performance of mechanical systems (at the
macro-scale) are found in the literature merely on

5-15] )

developing novel sensors and actuators (' , and

quantum information processing systems, with optics-
based distributed networks ( See for example, ' ),
optical switching, and a self-correcting quantum

memory, for developing quantum devices that can
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control themselves' '’ .
The applications of quantum optics in con-

trols[w-zo] [21-22]

, feedback systems , and programma-
ble logic devices in quantum optics "**' have shown
significant advances. An integration of experimental
quantum interference with soft computing as an ex-
perimental quantum-enhanced stochastic simulation
device can execute a simulation using less memory
than possible by classical means'**’ .

Although there is rich literature in areas related

. . ”» [16-24]
to “quantum engineering” (e.g., )

, the actual
integration of such technologies with macro-scale
mechanical systems, for instance in robotics, incor-
poration of autonomy, and autonomous systems ( e.
g., unmanned systems), has not been addressed,
despite its importance and its capacity for potential
technological breakthrough.

Optics technologies are used in quantum me-
chanics, where single photons (or alternatively elec-
trons, or sound energy levels ') are considered in
the study of a quantum system. Similar, already
well-developed technologies in optics and photonics
areas are utilized in quantum mechanics. For in-
stance, classical free-space optical communication
tools in the autonomy of unmanned systems -**' ( al-
though not in quantum context) , can be implemen-
ted towards the development of quantum engineering
systems.

The applications of the principles of quantum
mechanics integrated with the laws of analytical me-
chanics in analyzing the motion of elementary parti-
cles (for example, see' ) | such as molecular dy-
namics topics, are readily available. However, the
problem of multibody dynamical systems ( at the
macro-scale ) integrated with quantum mechanics
(for instance, where the quantum control of the sys-
tem is of interest) has not been addressed yet. The
research by the authors of this paper, and their earli-
er work (see for example, “***") is the first effort
towards the theoretical and experimental research and
establishing the interdisciplinary field of Quantum
Multibody Dynamics ('

28, 48-50] )

Recent advances in experimental and theoretical

quantum systems allows; Secure quantum communi-

[29]
’

cation code, with no classical communication
quantum correlations over more than 10 km'*' | En-
tanglement in noisy quantum channels "*'', Entan-
glement-based quantum communication over 144
km'*! | free-space entangled photon distributions in

[33]

long distances ™', and Secured quantum key distri-

bution with entangled photons **

. A quantum-in-
spired approach has been proposed to solve problems
of two robotic agents finding each other or pushing
an object (¥ %)) | without any knowledge of each
other. Furthermore, a research work on Psi Intelli-
| (37

gent Contro , inspired by precognition, has led

to an approach in a quantum entanglement-based au-
tonomy concept for autonomous vehicles'**'.

Recent technological advances in quantum me-
chanics make such experiments feasible with consid-
erable cost and size reductions "***'. On the other
hand, reconfigurable Quantum Key Distribution net-

“%ltechniques allow free-space quantum

working
communication over significant distances and over-
comes signal degradation issues (e.g., due to weath-
er events) , where, unconditionally secure bit com-
mitment by transmitting measurement outcomes is
possible to attain perfect security (' "), Collec-
tively, such technology resources and potential
capacities allow us to apply quantum capabilities in
engineering applications effectively, particularly in
robotics and autonomous domains.

Developing quantum capabilities in the mechan-
ical system domain pushes the engineering bounda-
ries beyond any existing classical technique, which
gives advantageous and unmatched capabilities, such
as the possibility of entangling the robotic agents in a
distributed robotic system, quantum superposition,
and guaranteed security. The present paper intro-
duces the integration of quantum technologies with
engineering systems (in a physical system domain) ,
where the quantum advantages are applied to robots
and autonomous systems in cooperative multi-agent

robotic network scenarios. It demonstrates how
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experimental quantum entanglement and cryptogra-
phy can be integrated with engineering systems ( for
example, how quantum can be used in control of a
mechanical system ). To the authors’ knowledge,

01y are the

this paper, and their recent work ('
first attempts in establishing the integration of experi-
mental quantum capabilities with multibody dynamic
systems ( such as multi-agent robotic problems). A
goal for such integrated quantum engineering ap-
proach is to demonstrate the interface of Quantum
Technologies with Engineering Systems for research
and educational purposes. The authors introduced the
concept of experimental quantum cryptography and
entanglement in robotics for the first time in the ref-

L4550] The concepts of Quantum Multibody

erences
Dynamics, Robotics, Controls, and Autonomy are
integrated with, and take advantage of, quantum
technologies here. The paper is organized as follows.
Section 2 presents an automation scenario, and Sec-
tion 3 addresses the classical dynamics and controls
aspects of such problems. Sections 4-6 give an intro-

duction to quantum mechanics (to allow the readers

— Laser and

a polarizer

to use the paper as a self-contained article). In Sec-
tions 7, the control problem for autonomy in the
context of quantum states as the integrated quantum
and classical feedback control transfer function for
the autonomy of mechanical systems, at nonatomis-
tic scales, is proposed, for the first time. Sections 8
and 9 discuss the quantum cryptography and quan-
tum entanglement, respectively, and how they are
implemented for automation and robotics applica-

tions.

2 Automation

The aim of the present paper to introduce a
technique to enhance autonomy through quantum
technologies. An integrated automation and robotics
system is shown in Fig. 1. This system consists of
autonomous mobile platforms, robotic manipulators,
and an automation facility equipped with actuators,
motion detection sensors, and microcontrollers. The
autonomy of such systems enhanced by quantum en-
tanglement and quantum cryptography, is discussed

in the following sections.

Robotic

manipulator

An automation

facility

Mobile
Robot

Fig. 1 An integrated automation and robotic system.

3 Dynamics of the Autonomous Platforms

The equations of motion of an autonomous sys-
tem containing robotic platforms and manipulators
are presented now. A schematic representation of the

system is shown in Fig. 2. The moment of inertia

matrix of the vehicle in principal axes is given by,

I. 0 O
]inertia = 0 [)’)' O
0 0 1[I

2z

The Euler angles for the sequence of rotations
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from the inertial frame, / , to the body frame, B ,
can be given by yaw, then pitch, and then roll, with
yaw rotation 6, about z, , in the inertial frame, or in
mathematical form r, =Hj r, , pitch rotation 6, about
y, , in the intermediate frame, orr, = H] r, , and
roll rotation 6, about x, , in the body frame, asry =
H;(0,)r,.

The three-angle rotation matrix is the product of
3 single-angle rotation matrices, as,

H; =H;(6,) H{(6,) H,(6,)
where HY (6,

r?e)-’

6,) is the rotation matrix of the in-

ertial frame with respect to the body frame, and

[H/]" =[H/]" =H} ; and H; H/ =H/ H}, =1.
The relationship between the Euler-angle rates and

body-axis rates is expressed as,

p 1 0 -sin 0), 0,
q|=10 cosf,  sinfxcosf ||g |= Lf@
r 0 -sinf, cos6,.cosb g
91
Or 9}, = Ly @,
92
Robotic
Pro fllers am__
aa_ wp
i
o

Hull boundary

N Autorhated manufacturing
e
Onveyers, Sensors,

where 6, is measured in the inertial frame, 6 is
measured in the intermediate frame, and 6, is meas-

ured in the body frame. Here, O denotes the Euler
angle rate vector, and w, is the angular velocity vec-
tor in the body frame.
The rate of change of the translational position
is obtained by
r,(1) =H (1) v5(t)
X

where r, = | y | is the translational position, and v, =

211
u
v | is the translational velocity in the body frame.
w

The rate of change of angular position is

(1) =Ly (1) w,(1)
The equaion of motion can be written in terms
of the rate of change of translational velocity as,
1
m(t)

and the rate of change of angular velocity is,

VB(I) = FB(t) +Hf(t) g (;)B(Z) vB(t) (1)

End effector

Fig. 2 A generalized automation system and robotic platform.
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w, (1) =15 (1) M, (1) - @, (1) Iy (1) @, (1)]
(2)

where @ is the cross product equivalent matrix of @

given by,
0 -0, o,
w=| o, 0 -w,
-w w 0

and H® =-w, H® ; H, =&, H., .
The external forces include the drag and propul-

sion forces in the body frame as,
X trag
F, = FB,dmg +F = Ydmg + Ypmpul (3)

B, propul
deg + mepul B

+X

propul

and the applied moments in body frame are

Ldrag + mepul
MB = MB,drag + MB,pmpu[ = Mdmg + Mpmpul
N, . +N

drag propul | p

(4)

The propulsion forces are generalized here,
which can represent the driving force of a ground ve-
hicle and the thrust of the propellers of an aerial ve-
hicle "%,

form, as in Fig. 2, the vertical translations are due

In the case of a mobile ground plat-

to the road roughness.

The motion of the end effector in Fig. 2 with
respect to the reference frame, R (located at the base
of the manipulator) , can be obtained by,

RTquf =RT1 sz sz"'ﬁl-l Tﬁzﬁl Ty
where 7T, is the transformation matrix of frame E rel-
ative to frame fn , and fn denotes the frame of link n .

If the position and orientation of the end effec-
tor are given by the vectors P and Oy relative to the

reference frame R , attached to the mobile vehicle,

o), "lo), o)

The control of the robotic platforms in a multi-

we have,

agent networked scenario is discussed now. In a
multi-agent robotic system scenario, various control

tasks may be desirable, such as formations, swarm

and cooperative physical tasks. In performing robotic
tasks, a common problem is involved with the kine-
matic synchronization of the robotic platforms in a
network of autonomous systems, in a dynamic envi-
ronment. For instance, in a formation problem for a
group of robotic platforms (or unmanned autono-
mous systems ), maintaining the reference relative
positions between the agents is required. Such forma-
tion may be defined by,
}LTH (rl,i(t) -r (1)) -d, (1) H: 0

where r, ; is the position of the robotic agenti , r; is
the position of a reference agent, and d, is the de-
sired position vector of robot ¢ with respect to the ref-
erence or another agent. A controller g(k,,) can
now be implemented to realize the required task, by
controlling the actuation forces of the individual ro-

bots that drive each agent ¢ , with a strategy given
by,
N+1
Z/=1 aij{g(kpid) [(rl,l(t) - rlyj(t) ) - d1<t> ] }
where a; is equal to 1 if an agent i is connected toj ,

and it is equal to zero otherwise.

4 The Quantum State Vector

The spin state of a particle is denoted by |+z)
with the value of intrinsic angular momentum in the z
., equal to i/2, where h = h/27 =
1.055 X 10% erg + s = 6.582 x 10" eV - s, and h is

the Planck’ s constant. In classical physics, a coordi-

direction, S

nate system with the basis vectors i, j, and k is ap-
plied in representing vectors. The quantum represen-

tation of vectors is realized based on the assumption
. .1 . . .
that if a (spm—?) particle is sent to a magnetic

field in the z direction we obtain only the values /2
and -%/2, corresponding to the particle ending up in
the state 1+z), and ending down in the state |-z ),
respectively. These two states can be considered as
the vectors in the quantum mechanical vector space.
In this vector system, {-z|+z) =0 implies that a
particle in the state |+z) has an amplitude of zero to
be in the state |-z). This is analogous to the orthogo-

nal property in classical physics (e. g., for an
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electric field, or a force field) where, for instance,
i - j=0. Similarly, the amplitude of a particle in the
state |+z) to be in the state |+z) is equal to one, or
(+z1+z) =1 (the analogy is i + i=1 in classical
Physics. If a particle initially in the state | +X) passes
through a magnetic field in the z direction, it can at-
tain the amplitudes ¢, and c_ in the states | +z) and
l-z) , respectively. Therefore, the state |+x) can be
expressed as a linear combination of the states |+z)
and |-z) by,

l+x) = c,l+z) +c_|-z) (5)

Assume an arbitrary spin state | ) , created by
sending a beam of particles with the intrinsic spin- >

through an inhomogeneous magnetic field oriented in
some arbitrary direction. If the measurement of the
intrinsic angular momentum for an arbitrary state

| ) in z direction, S, , is made, this state can be ex-

z 9

pressed by,

) =c, | +z) +c_|-z) (6)
where the arbitrary state | ) is in the superposition
of the states |+z) and |-z) with amplitudes of ¢, and
c_ , respectively. The amplitudes ¢, and ¢_ depend
on the orientation of the magnetic field that the parti-
cles pass through.

For a ket vector | ) , a corresponding bra vec-
tor can be defined as, (/| . The amplitude of a par-
ticle in the spin state | ¢) to be in the state | ¢) can
be shown by (¢ | ) (which is an inner product rep-
resentation ) . Thus, for example, we can write,

(+zly) = c(+zl+2) +c{+zl-2) = ¢, (7)

(zlp) =c-zl+z) +c {-zl-z) = c_ (8)

Substituting ¢, and ¢_ from Equations (7) and
(8) into Equation (6) we obtain,

L) = (+zlh)y | +z) +{-z|) |-z) (9)

By placing the amplitudes {+z i) , and {-z|¢)
after the kets in Equation (9), we have,

L) =l +z)y(+zlh) H-2)(-2 1) (10)

The amplitudes are complex numbers, and
therefore placing them before or after the kets in E-
quations (9) and (10) does not make any differ-

ence. An analogy to presenting the amplitudes and

the states of the quantum form in a classical mechan-
ics vector form, such as a force vector F in a two-di-
mensional problem, is the force F=F i+F j, which
is the same as F=iF +jF,.

By definition, there exists a bra vector for each
ket. In order to complete the quantum notation for
the states, the bra vector is also represented similarly
to the ket representation of the amplitudes and the
states as follows:

pl=c(+zl+c {2l (11)

If the same procedure for kets as in Equations
(7) to (10), is carried out for the bra representa-
tion in Equation (11), we have,
pl+z)y =c {(+z|l+z) +c'{+zl-z) =, (12)
l-z) = {+zl|-z) +c'{-z|-z) = " (13)
and substituting the results in (12) and (13) into
(11) leads to,

Wl= Wl+z)(+zl+Wl-z)(zl  (14)

In order to evaluate (¢ | ) , Equations (9)
and (14) are combined, noting that {+z | +z) = 1,
(-zl+z)=0,{-zl-z) =1,{+zl-z) =0

W) = l+o(+zly) +@ln(zly)  (15)

The term, (i 1¢) , which represents the ampli-
tude of a particle in the spin stateys to be in the state
Y, is equal to one, by definition.

For a case that (1 +z) implies {+zl) , and (¢
| -z) implies (-z i) , which in fact is true by defini-
tion, we can write Equation (15) as,

Wy =1 (+zly) 1> +1 {zlyg) 1> =1 (16)

The term | (+zl4) | is referred to the proba-
bility of a particle in the state | ) being in the state
| +z) when S, is measured. Similarly, the statement
for | {(+zly) 1% is; the probability of a particle in
the state | ) being in the state | -z) when S. is meas-
ured. Equation (16) is interpreted as the sum of the
probabilities of finding the particle in the state | + )
or|-z) is equal to one. Quantum physics, therefore,
unlike any classical mechanics expectation, states
that the probability amplitudes of (+z ) and {-z li))
can be nonzero simultaneously, where a particle can
be in the superposition of the states | +z) and | -z) .

Thus, measuring intrinsic angular momentum can
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result in non-zero probabilities for both S, = #/2 and
S. = -fi/2 simultaneously. In classical mechanics, we
only expect to obtain one value for the angular mo-

mentum of a particle at a time.
5 Rotation of Basis States
1
A spin state | ) of a spin- > particle is devel-

oped when sending particles through a magnetic field
oriented in an arbitrary direction. The amplitudes ( +
z Iy and (-zl) give the projected values of | /) onto
the states |+ z) and |-z) , respectively ( Equation
(9)). As in a classical case for force vector, for in-
stance, the amplitudes and the projected values are
used in representing the vector F, in a quantum sce-
nario the projected values or the amplitudes are com-
plex numbers representing a state | ¢) .

In classical mechanics, a vector, for instance,
force F is shown as F=F i+F j, or F—~(F,  F,.)
Similarly, a quantum representation of a ket can be

given by a column vector as,

<+Z|l,//> _ C,
w2 (G ) U o

Now in this vector form, the state | + z) for in-

stance, can be given by,

(+zl+z)) (1
| +2) SZ;;_S(GZ' +Z>j = (oj (18)

and the state | -z) is represented by,

(+zl-z)) (0
|-Z> .S’Z;:i.v ( <-Z | -Z> j - (lj <19>

If a particle in the state | + x) is sent through a
magnetic field in the z direction, and measurements
of S, gives probabilities of 50% for both /2 and
-h/2, we have,

|<+z|+x>|2=% (20)

| (-z|+x) 1% = (21)

1
2
which allows to express Equation (5) in the vector
form as,

(+zl+x)) _ 1(1
! +X> S‘.;:is ( <-Z| +X>j - «/Q(J <22)

In order to write Equation (15) in a vector/ma-
trix form, and accommodate the bra vector for ({1 ,
the relation can be written as,

Wiy = (1+2), 1)) [“Z'w

) @

It can be seen that the appropriate vector form

for a bra is a row vector to satisfy the matrix multi-
plication of the ket and bra as in (23), and thus,

Wi (Gl+z),lz) (24)

A rotation operator can be used to represent the

transformation of a ket from one state to another. For
. . . .1 .
instance, if the magnetic moment of a spin- 5 parti-

cle in the state | +z) placed in a magnetic field is in
the x direction, the spin will rotate in the x - z plane
and as time progresses, the particle will be in the
state | + x) . This rotation of the state | + z) in the
magnetic field pointed in the x direction can be deno-

ted by R . The rotation can be given by,
|+ x) =§(;jjl+z> (25)

where j indicates the unit vector along the axis of ro-

tation y. Therefore, operator R rotates | + z) about

. . T
the unit vector j with an angle of o Such an opera-

. o1 .
tor rotates an arbitrary state of a spin- > particle

| ), when placed in a magnetic field in the x direc-

tion, as given by,

E[ij Iy = k\(ij (c,1+z) +c_1-2))  (26)

= c, ﬁ(;j] | +z) +c§(§j) |-z)

=c, | +x) +c_l-x)

In Equation (26), it is assumed that the state |
i) is initially in superposition of the states | +z) and
| -z) as in Equation (6). Note that the amplitudes c,
and c¢_ are numbers, which can be placed before or
after the operator.

An infinitesimal rotation, for instance, by an
angle do about the z axis can be expressed by an op-

erator R (dek) given by,
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R(dok) = 1-%Zd¢ (27)

jz is an operator that generates rotations about
thez axis. As seen from (25), when do — O,
R (deok) — 1. jz have the same dimensions of as # ,

or angular momentum.

6 The Schrodinger Equation

Time evolution in quantum mechanics is intro-
duced by the Hamiltonian operator, which gives the
time translations in quantum systems. The time-evo-
lution operator U (t) translates a ket vector forward
in time as given by,

U@ 19(0) ) =1y(1) ) (28)
where | (¢) ) is the state of the system at time ¢ ,
with the initial state | y(0) ) at time ¢ =0.

By adopting the rotation operator in (27), a
time translation, as an operator, and knowing that |
() ) is a unit vector, U (z) must be a unitary trans-
formation and therefore, the first-order Taylor ex-

pansion of U(t) can be given by,

ﬁ(t) ~ I- %ﬁdt (29)
where the operator His the generator of time transla-
tions. The operator H translates an initial ket to a ket
at a different time. By substituting (29) into (28)

we get,

) ) = (b ) 1p(0)) (30)

Equation (30) can be rewritten as,

() - 19(0) ) = (hﬁdzj W) (31)

Or ih%lt//(t)> =HIyG)) (32)

Equation (32) is known as the Schrodinger E-
quation. This equation describes the state of the sys-
tem at its position at a corresponding time. This is a-
nalogous to Newton’ s second law of motion, which
describes the state of a physical system at each time
instant by solving for the position and momentum of

the system as a function of the applied forces.

7 Controls in the Context of Quantum

States

Dynamics of a robotic system, and of a robotic
control task, as an example of a control of multi-a-
gent systems in a network of an autonomous system,
has been presented in Section 3.

The dynamics of a robotic platform can be giv-
en by Equations (1) and (2). For a multi-agent net-
worked system, the equations of motion of the a-
gents can be given by the system of equations,
which in a matrix form can be represented by {F} =
[M] {a}. The present paper aims to integrate the
classical dynamics problems with quantum capabili-
ties such as quantum entanglement and cryptogra-
phy, to enhance the performance of dynamic sys-
tems, through an interdisciplinary approach. The in-
tegrated quantum and classical control block diagram
of a dynamic system is presented in Fig. 3.

The Laplace transform of the integrated classical
and quantum feedback control system in Fig. 3 is of
interest. The Laplace transform approach for classical
dynamic systems is readily available. The Laplace
transform approach for quantum states is presented
below, and further, it is proposed for the integrated
control system. The Schrodinger Equation in (32) is
repeated by,

Mechanical/Quantum disturbances

FB,drag' MB,drag

vp(t)
@p )| Tr
Dynamics [0]0

Classical and/or quantum sensing

Controller

GO0 P
,propu

Actuation

F B,propul

H

Fig. 3 The control block diagram for an autonomous

dynamic system with an integrated quantum control system.

) = HIp(0)

The Hamiltonian in the Schrodinger Equation
can be expressed by H=H +H , where H' is the

perturbation.



INSTRUMENTATION, Vol 6. No 4, December 2019

117

By applying the Laplace transformation to the

Schrédinger Equation "™ | we get,

c[ﬁ|¢<t)>]=c[ihi|¢<z>>} (33)

This can be written as "™ |

HLIYO)Y]+LH 1g(0))] =
R 1p(0)) +ihc[;’t|¢m >J (34)

Therefore,
H LW (s)) + LIH 1g(1))] =
-ih L (0) ) +iks| P(s) ) (35)
where L [ (z) )] is denoted by | ¥(s) ) .
The time-independent and time-dependent cases of
H' are presented now.
In the first case, where H' is time-independent
the solution to the expression in (35) can be given by,
(H' + H'-ikis) | W(s) ) =-ik1¢(0) ) (36)
Equation (36) represents linear variation of a
system with the generalized inertia matrix ( Laplace
transform of the system matrix) ,
M, = (W(s) | H-ihs| W(s)) +ih
(W) 1y (0) ) +ili(yp(0) | W(s))  (37)
Equation (34) is obtained from the extremals
of | M, 17 .
Inverse Laplace transform of the time-independent
case can be obtained by rewriting Equation (36) as,
(H + X H'-itis) | W(s)) =-ifil $(0) ) (38)
where A is a perturbation parameter, and by expan-
ding | ¥(s) )in A", as,
| W(s)) =2 AT W(s))  (39)
By substituting (39) into (46) and separating
the terms of each order in A we have,
(H'-itis) | W< (5)) =-ih14(0))
(H-ifis) | W ()Y +H'| < (5)) =0
(H'-ihs) | W (5)) +H'| T (5)) =0 (40)
For initial condition | (0) ) =¢] , the coupled
equations in (40 ) are solved by expanding |

Wn(s) ) in terms of eigenfunctions of H’ as (ss]

V() =2 €, e (41)
By substituting (41) into (40), we get,
ih
itkis- E,°

CI(I) —

c,” =0 (42)
and also,
o L L H' T @) (43)
" (ihs- E,") (ihs- E,°)
which gives the first-order approximation as,
il ¢}
| W(s) ) = +
) ihs- E,°
ih(eh | H'| @) @)
N heE0) (44)
m (ths- E,") (ihs- E,")

Finally, the inverse Laplace transform is determined
from (44), as,

tA
L () ) = [I'OZAO}
Ao, I H'| ¢))
i E,% ih(¢’ | H'| @) ¢
@?exp(' j + /\ 2 m (E,,,O' EIO)

i B i Bt .
exp| - - - exp| - - ®, (45)

For the second case, H' is time-dependent and
given by "
H = zl V,(r)exp(-ilet/h) (46)
where [ ranges from -o to o .
By applying the Laplace transformation to the

(32), we get,

HL W(s)) +
S V(1) L Lexp(ilet/h) 1 (1) )] =
-ih 1 (0) ) +ihs| W(s)) (47)

By Taylor’s expansion of the second term in

(47) is expressed as,
HL W(s)) + X, Vi(r)exp(-ile D,/h)
W(s) ) =-ih 1 (0) ) +iks| ¥(s)) (48)

d
where D_ denotes the deferential operator o Equa-
S

tion (48) can be rewritten as,
[ﬁﬂ + Zz V,(r)exp(ile D / k) -ihs] | W(s) ) =
-tk 1 (0) ) (49)
which is the linear variation of
N, =(W¥(s) I H ++ Z [ V,(r)exp(ile D /H) -
ihs | W(s) ) + k(T (s) 1 (0) ) +
i (0) | W(s)) (50)
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The extremals of | NV, | * obtain Equation (49).

The transfer function of the feedback control
system in Fig. 3 may be expressed as,

TF =c(l ¥(s)),e)

Act({F(s) , | ¥(s) )} )Dyn({F(s) } )/1 +

c(1 W(s)),e)Act({F(s) } ,

| W(s)))Dyn({F(s) } )H (51)

The transfer function in (51) is a generalized
feedback control system, which integrates the classi-
cal dynamics of the system, actuation, and sensing,
denoted by Dyn ({F(s)}, Act({F(s)} , and H,
respectively, with the quantum states | W(s) ) . The
response in the time domain is obtained by applying
a desired input to the transfer function and eventually

through the inverse Laplace of the function.

8 Quantum Cryptography for Automation
An automation system that includes robotic ma-

nipulators, and an instrumented conveyor with inte-

Robotic

W
Laser source &‘

Polarizer

Gimbal

y
A‘,..\'-'-r‘: 1
W

Alice Drone (An alternative to the ground

Alice
Robot

" Robot depending on the application)

manipulator

grated sensors and actuators, and autonomous mobile
platforms, is shown in Fig. 4. In this section, it is
desired to implement automated control tasks in such
automation scenarios by using quantum cryptography
techniques. A generalized feedback control system
has been introduced in Section 7. Quantum cryptog-
raphy is applied to guarantee security against cyber-
physical attacks while performing efficient control
tasks for autonomy. A schematic diagram of a quan-
tum cryptography process is given in Fig. 5. Fig. 6
and Fig. 7 show the components of the robotic sys-
tems in more detail. Fig. 8 introduces an alternative
mobile platform as an aerial system rather than a
ground platform.

Experimental quantum cryptography is carried
out by polarizing photons, passing them through a

polarizing beamsplitter cube, and detecting the pho-

tons’ polarization.

An
facility

automated

Conveyor belt
onveyor be Cryptography

E - .
R % equipment
¥

Bob Robot

Fig. 4 An integrated automation and robotic system with quantum cryptography instrumentation.
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Fig. 5 Quantum cryptography experimental setup.
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Fig. 8 The Alice drone.

The primary operations in a quantum cryptogra-
phy experiment include ;
- Generating and sending single photons by a
laser diode.
Spontaneous Parametric Down-Conversion
(SPDC) process.

- Polarizing photons: performed by sending
A
photons through S (half-wave) plate.

- The process of detecting the polarizations.
the polarized photons are sent to a polarizing beam-
splitter (PBS) cube, where the PBS passes the hori-
zontal polarizations and reflects vertical polariza-
tions, and two sensors, each dedicated to vertical or
horizontal polarization sensing, respond to the re-
ceiving of the photons.

For the laboratory demonstration of experimen-
tal quantum cryptography, we assume that the laser
diode is producing single photons, by applying the
SPDC process, and the sensors detect single pho-
tons. For demonstration purposes, instead of single
photons, laser pulses are used, which is sufficient
for the experimental demonstration of the concept of
experimental quantum cryptography here. The
process of generating and counting ( detecting) sin-
gle photons is presented in the entanglement experi-
ment in Section 9. The mobile robots in conjunction
with quantum cryptography tools are used for coop-
erative tasks and control of the mobile robot applica-

tions. The “Alice robot” contains a laser diode and a

A
EX polarizing rotator plate. The “Bob robot” contains

A
a > polarizing rotator plate, a polarizing beamsplit-

ter cube, and two sensors. Eve, eavesdrop attacker,
tries to: a) intercept and detect the information sent
from Alice, and b) duplicate the information and
send it to Bob. In the quantum cryptography, Eve is
exposed to Alice and Bob after a few exchanges of
photons, because a single photon cannot be partially
detected (as once a single photon is detected by a
sensor, it is trapped). Also, the polarization of a
single photon (e.g., vertical and horizontal) can be
produced by a variety of polarization combinations.
When a photon passes through two separate polariz-
ers, one on Alice and the other on Bob, the result of
two polarizers are combined. So, by having two po-

larizers ( one on Alice, and the other on Bob),
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there are various ways of combining polarizations to
achieve one result. This is discussed next.

The “ket” symbol | ) is used to denote a quan-
tum state. The combination of polarization associated
with the half-wave plates at Alice and Bob are given
in 1) where “+” basis corresponds to | 0°) ,
and | 90°) , polarizations (or horizontal and vertical

“ ”

polarizations ) and X basis corresponds to
| -45°) and | 45°) polarizations produced by the
half-wave plate polarizers. The polarization states of
the photons (i.e., | -45°) , | 0°) , | 45°) , and |
90°) ) from Alice to Bob are not known publicly.
However, Alice and Bob publicly share the informa-
tion about the bases (“+” or “X”) they used. More
details on the quantum cryptography procedure are
found in .

The polarization of the photons reaching the
detectors on the Bob Robot is converted to zeros and
ones, where zeros and ones are associated with the hor-
izontal and vertical polarizations, respectively. The ze-

ros and ones are sent to a microcontroller, as digital

commands, for control and autonomy applications.

9 Quantum Entanglement for Automation

Quantum entanglement can be achieved by the
Spontaneous Parametric Down-Conversion ( SPDC)
process, where two particles are entangled, and pre-
dicts non-local behavior. Photons can be the states of
vertical or horizontal polarization, and the entangled
photons can be specified by the superposition of two
photons that are in orthonormal linear polarizations
(vertical and horizontal ). Quantum mechanics only
predicts that the photons are in the vertical and hori-
zontal polarization states, simultaneously, but the
state of the polarization of the photons cannot be in-
dividually labeled for each photon. When a measure-
ment is made, we can find each of the two photons
in one of two states with a corresponding probability.
By knowing the polarization of one photon, the po-
larization of the other photon can be predicted as the
polarizations of the photons are orthogonal in the SP-

DC process. However, the two photons are only in

the entangled state until the measurement is made.
Once the measurement is made, the photons are no
longer correlated, and therefore they are no longer
entangled, due to the non-local property of quantum
mechanics ( Violation of Bell’ s inequalities ‘*').
Non-local properties have led to many remarkableap-
plications such as quantum teleportation (e.g., "*
), and the rise of the new field of quantum informa-
tion (e.g., "),

A quantum entanglement experiment is shown
in the setup of Fig. 9 (in this figure, the notations
are; FM . Flipper mirror; M. Mirror; MA: Mirror
A; MB. Mirror B; HWP. Half waveplate; AP:
Autonomous (Mobile) Platform). The physical ex-
perimental setup is presented in Fig. 10. The SPDC
process converts one photon of higher energy into a
correlated pair of photons with lower energy. By
sending a laser beam (e.g., a 100 mW laser, with
405 nm wavelength) through a nonlinear crystal (i.
e., BBO: beta Barium Borate ), one photon of
higher energy is converted into a correlated photon
pair ( with 810nm wavelengths ) , producing entan-
gled states, with orthogonal horizontal and vertical
polarizations. The two single-photon counter module
modules ( SPCM50A/M ) | in Fig. 10, installed
on two robots, count photons ( by detecting the inci-
dent photon) , which is used for evaluating entangle-
ment. The SPCM50A/M module specifications in-
clude: Wavelength Range of 350 - 900 nm, Typical
Max Responsivity of 35% at 500 nm, and Active
Detector Size 50 pm ('*). The 810 nm narrow
band-pass filters, with the Bandwidth of 30 nm,
shown in Fig. 10, will allow only 810 nm photon
pairs produced by the SPDC process to reach the
Single Photon Counter Modules ( SPCMs).

The process of identifying the entangled correla-
ted photon pairs entails the detection of the photon
pairs that reach the two SPCM detectors at the same
time "™ ). The signals from the two SPCM detectors
can be sent to an electronic coincidence unit. Each
SPCM detector assigns a coincidence to any pair of

detected pulses that arrive within a specified time
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(basically an AND gate). Another possibility could
be to have a circuit that assigns a time to the arrival
of the photons so that through a classical channel,
Alice and Bob can compare the arrival times, and
those that arrive within a specified time can be con-
sidered in as coincidences. The SPCM detectors on
Alice and Bob should synchronize their clocks to
within tens of nanoseconds or perhaps pick the time
from a wireless signal, and then record the time of
arrival of the detector photons. Alice and Bob need
to share the basis information through the classical

channel (e.g., BB84 encoding) ,

[74]

and also the pho-

ton arrival times

If the HWP and the polarizer in Fig. 9 and Fig.
10 are used to manipulate the polarization state of
one entangled photon (e.g., Alice), along the way
when the photon travels from the BBO to the polari-
zing beamsplitter, the polarization of the other corre-
sponding entangled photon (Bob) is affected simul-
taneously due to the entanglement phenomenon; this
retains the photons in an entangled state (until before
the measurement of a photon is made ). This is
where the non-classical phenomenon of the quantum
entanglement appears when Alice and Bob are at any

arbitrary distance apart.

Autonomous

PBS | b Platform (AP)

810 nm

I

i HeNe Alignment Laser

'FM e — —o' <
M :g = —_—— - >

N ,__-—"’@“~~§\ " Filters
Nonlinear H' = —
M Crystal (BBO) Polarlzer
810 nm Filter V/
Leader AP (e.g. Robot)

Laser (Blue)

Coincidence

count device

PBSI% \>[D/’—

| SPCM

AP (e.g. Robot)
SPCM

Fig. 9 Quantum entanglement experimental setup diagram.

When the single-photon counters detect entan-
gled photon pairs, a digital signal from the counters
can be sent to the robot onboard microcontroller,
which then can be translated to a digital task for con-
trol of the autonomous system ( such as a system of
cooperating robots) . It should be noted that although
the wave functions of the entangled photons collapse
after the detections, by converting the detected en-
tangled photons to digital signals, the signals are
now available for digital control purposes of the au-
tonomous system. Once the Alice and Bob robots are
in an entangled state, any desired information can be
exchanged (e. g., by the quantum -cryptography
process) between a leader robot and the entangled

robots for the two robots ( Fig. 9 and Fig. 10) to

perform the desired robotic or autonomous tasks.
The quantum cooperative autonomous platforms
presented in the cryptography and entanglement sec-
tion of the present paper, and a combination of sce-
nario of entanglement and cryptography for autono-
my, ( where entanglement triggers the process of
Cryptography for multiple robotic systems) perhaps,
can be the most sophisticated technique in coopera-
tive robotics and unmanned systems technology. This
is due to the ultimate speed of photon propagation
for robotic control applications, true guaranteed se-
curity and immunity against cyberattacks, and the
possibility of having access to the entanglement ca-
pabilities ( that does not exist in the classical do-

main ) .
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Fig. 10 Quantum Entangled robot experimental setup.
An alternative way of quantum communication nique is given now. Assume a two-robot problem
between autonomous systems is Quantum Teleporta- where Alice robot is to teleport a quantum state, for

tion (e.g., ‘). A brief description of this tech- example | i) , to Bob. Alice and Bob share a quan-
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tum entangled state via SPDC process ( Fig. 9 and
Fig. 10). Alice, with the state | %) to teleport, car-
ries out a measurement on the entangled photon that
is received from the SPDC process. Alice then com-
municates the outcome of the measurement classical-
ly to Bob. This is done by converting Bell States (e.
g., horizontal and vertical ) to corresponding digital
codes (e.g., zero and one) and transferring the zero
and one through a classical channel. Finally, Bob ro-
bot performs a single-qubit operation based on this
information and retrieves the initial unknown state |
) '™ It should be noted that in this Quantum Tele-
portation technique, the state of | ¢) is teleported
from Alice to Bob, where the intermediate entangle-
ment process that sends a pair of entangled photons
(e.g., with vertical and horizontal polarizations) to
Alice and Bob allows this quantum state teleportation
process.

As supplemental material, some videos of the
quantum robotic experiments, presented in this pa-

per, are available in References' ™ and" ™.

10 Conclusions

An integrated quantum and classical control sys-
tem for autonomy was introduced in this paper. The
dynamics and control system for a generalized auto-
mation scenario was presented as an application ex-
ample. An introduction to analyzing the quantum
states was given. A transfer function for the integrat-
ed quantum and classical feedback control system of
the automated scheme was proposed. Quantum cryp-
tography and entanglement were explored with appli-
cations to autonomous systems, and the correspond-
ing experimental setups and procedures were de-
scribed. The present paper proposed and discussed
the integrated quantum and classical feedback control
transfer function for the autonomy of mechanical sys-
tems, at non-atomistic scales, for the first time.

The future work of this research will include
presenting and investigating of the use of quantum
teleportation for control of autonomous and dynami-

cal systems.
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