
INSTRUMENTATION, Vol. 7, No. 2, June 2020  51 
 
 
 
 
 

Finite-time Stability of Heating Furnace  
Temperature Control System 
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Abstract: A finite-time stabilization controller for the heating furnace temperature control system is proposed. 
Based on the extended Lyapunov finite-time stability theory and power integral method, a finite-time stable 

condition of the heating furnace temperature control system is given. The temperature of the heating furnace is 

directed by the finite-time stabilization controller to make it stable in finite time. And the quality and quantity 

of slabs is improved. The simulation example is presented to illustrate the applicability of the developed results. 
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1  Introduction 

Slabs heating in a heating furnace is a typical 
industrial process [1]. Since the heated slabs that meet 
the production process requirements are controlled by 
the heating furnace temperature control system, the 
heating furnace temperature control system plays an 
important role in the process of slabs heating. Due to 
the function of the heating furnace temperature con-
trol system, many control methods on heating furnace 
temperature control system have appeared in the lite-
rature, such as neural network Smith predictive con-
trol [2] , fuzzy PID control [3] , fuzzy neural network 
control [4] , fuzzy control [5] , PID control [6] and so on. 
However, the stability control issue has not been con-
cerned. In literature [7-8], the asymptotically stabili-
zation of the heating furnace temperature control sys-
tem is studied. It is obvious that the traditional stabil-
ity only can describe the asymptotic behaviour of the 
system as time goes to infinity. Nevertheless, the sta-
bility fails when people want to know the behaviour 
of the system in finite time. As a consequence, fi-
nite-time stability has become popular in recent years.  

As for general system, finite-time stabilization 

controller is constructed in literature [9] by the power 
integral method [10-11]. Literature [12] proposes a 
power integral finite-time stabilization controller for 
the second-order system subject to unknown bounded 
disturbance. Power integral finite-time stabilization 
controller for high class connected systems is devel-
oped in literature [13-14]. Finite-time stabilization 
controller for P-normal-class high-order nonlinear 
systems is constructed in literature [15] by the power 
integral method. Motivated by the characteristics of 
power integral finite-time stabilization controller, the 
power integral method in the establish of finite-time 
stabilization controllers is also applied to some prac-
tical systems, such as aerospace attitude control [16-17], 
missile pilot [18], surface vehicle control [19] and so on. 
However, the power integral finite-time stabilization 
controller of the heating furnace temperature control 
system has not been reported.  

The slabs are heated while transported through 
the furnace in steps. The temperature of the slabs is 
controlled by varying the zone temperature. Under the 
finite-time stabilization controller, the heating furnace 
temperature control system states can be stabilized to 
the origin in a finite time and all slabs reach their de-
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sired final temperature range in finite-time. Therefore, 
the fuel is saved and the slab quality is improved. This 
paper introduced a finite-time power integral control-
ler and finite-time stability condition of heating fur-
nace temperature system. Different from the power 
integral finite-time stability controller raised in refer-
ence [9], the extended Lyapunov finite-time stability 
theorem [20] is employed to establish the finite-time 
stability. The influence of time constant, gain and 
time-delay on the finite-time stability of the heating 
furnace temperature control system is given through 
simulation. 

The rest of this article is organized as follows. In 
Section 2, some preliminary results are presented. In 
Section 3, stability of heating furnace temperature 
control system is analyzed. In Section 4, numerical 
examplesare used to illustrate the effectiveness of the 
theoretical results and the influence of parameter 
changes on the finite-time stability of the heating fur-
nace temperature control system. Finally, in Section 5, 

general remarks are made for conclusion.  

2  Preliminaries 

Lemma 1 [21]. Considering the following system 

       0, 0 0, , 0nx f x t f x R x x

   

 
Where, : D nf R is continuous on an open 

neighborhood D of the origin 0x  .  
The zero solution of the system is finite-time 

convergent if there is an open neighborhood U D  

of the origin and a function    : \ 0 0,T U   , such 

that 0x U  , the solution  0,t x of the system is 

defined and    0, \ 0t x U  for  00,t T x  , and 

 
 

0
0lim , 0

t T x
t x


  . Then,  0T x is called the set-

tling time. If the zero solution of the system is fi-
nite-time convergent, the set of point 0x  such that 

 0, 0t x  is called the domain of attraction of the 

solution. The zero solution of the system is finite-time 
stable if it is Lyapunov stable and finite-time conver-

gent. When, nU D R  , the zero solution is said to 

be globally finite-time stable.  

Lemma 2[3]. If, 1

2
0 1pp

p
   , where, 1 0p   ,  

2 0p   is positive odd number, then 

12 pp p px y x y    

Lemma 3 [8]. For, ,x R y R  , let , ,c d  be a 

positive real number, then 
c

c d c d c ddc dx y x y
c d c d

 
  

 
 

Lemma 4 [3]. For, , 1,ix R i n   , 0 1p   be a 

positive real number, then 

 1 2 1 2
p pp p

n nx x x x x x        

Lemma 5[20]. system 

        0 0, 0 0, 0, 0x t f x t f t x x


     

Where,   nx t R represent the state, :f U   

nR is a continuous function in the domain U contain-

ing the origin to the dimensional space nR , 0 nR

represents the zero vector, 0x represents the initial 

state. If there is a positive definite and continuous 
function V(x) in the defined domain U, it satisfies 

    ,pV x V x x U 


      

Where,  0,0 , 0,1p      . 

Then the system is actually stable in finite 
time.The convergence time of the system state is as 
follows: 

 
 

1
0

0 1

PV x
T

p 






 

Where, V(x0) is the initial value of V(x). 

3  Finite-time Stability Analysis of Heat-
ing Furnace Temperature Control System 

General industrial objects can berepresented by a 
first-order system or second-order system[22]. Heating 
furnace temperature control system is represented by a 
second-order system in literature [23], which can be 
expressed in the form of the following transfer func-
tion  
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    1 1

sKeG s
s Ts




 
  

(1) 

Where, K represents the gain, T represents the time 
constant,  represents the time-delay. 

Without considering the pure time-delay se  , 
according to the method in literature [24], the transfer 
function is transformed into the following state-space 
form 

 
 

.
1 2

.
2 1 21

x x

x x T x u



    
 

(2)

 
The sufficient condition under which the system 

(2) can be stabilized in finite time by a continuous 
state feedback are as follows 

  1 21 0x T x   
 

(3) 

The finite-time stabilization controller is con-
structed as follows 

 

 
 

1 21 11
1 2 2 1 1

1 2

12 2

1

m m mq mu k k x k x
m

x T x

      
 

  
 

(4) 

Where, 1
1 2 1 2

2
0, 0, 1 2, ,mk k m m m

m
     is 

positive odd. 
Theorem 1. Let the heating furnace temperature 

control system is represented by Eq. (2). If the fi-
nite-time stabilization controller is set as Eq. (4), un-
der the finite-time stabilization sufficient condition Eq. 
(3), the system Eq. (2) can be stabilized in finite time.  

Proof: First, select a lyapunov function 

 
  2

1 1 1
1
2

V x x
 

(5) 

According to system Eq. (2), we have 

 
   * *

1 1 1 2 1 2 2 1 2V x x x x x x x x


   
 

(6) 

Where, *
2x is virtual controller. 

Then the continuous virtual controller *
2x can be 

defined as 

 

1
*
2 1 1

mx k x   (7) 

Where, 1
1 1 2

2
0,1 2, ,mk m m m

m
    is positive odd. 

Put virtual controller Eq. (7) into Eq. (6), we 
have 

 
 

11 *
1 1 1 1 1 2 2mV x k x x x x
    

 
(8) 

According to lemma 2, we have 

 

   
1 1

* *
2 2 2 2

1 11 11 1*
2 22 2

m mm m

m mm mm m

x x x x

x x 
 

  

  
 

(9) 

Where,   is denoted as: *
2 2
m mx x   .  

Substituting Eq. (9) into Eq. (8), we have 

  
11 111

1 1 1 1 12 mm mV x k x x 
   

 
(10) 

According to lemma 3, we have 

   

1
1

1 11 1 111 1 1 11
1 1

1 1 11 1 11 1
1

1 1 11 1 11 1
1 1 1

1
1*2 2 1 11 1

2
1 1

2 1 1

m

m mm m m

m
m m m

mm m m

cc mx x

m m

mc cx
m m

mc m x c m

 







   

  

   

 
 
 
  
    

 
  

   

 
     

 

(11)  

 

Where,  
11 1

1 1 1 1
10 2 1 ,0
2

mc k m m 
       . 

 
Substituting Eq. (11) into Eq. (10), we have 

 

 

 

 

 

   

11 111
1 1 1 1 1

11 111 11
1 1 1 1

1 11 11
1

1 11 11
1 1 1

1 11 11
1

1 11 1 11
1 1 1

2

2 1

2 1

2 1

2 1

2 2 1 1

mm m

mm m

mm m

m m

mm m

m m

V x k x x

k x mc m x

c m

k mc m x

c m

k m k m m m









 

 

 

 

 

   

  

 
     

 
    
 
     

 

 
      

 

 
11 111 11

1 12 1mmm mx c m 
  

    
11 111 11

1 1 1 11 2 1mmm mk x c m 
     

  

(12) 
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Consider the lyapunov equation as follows 

 

   

 2
*
2

2 1 2 1 1
12

*
211 1

1

, +

1

12 2

x m m m
x

mm

V x x V x

s x ds

k
m



 




  
 



 

(13) 

It yields 

 

 
1

*
1 1 1 12

1
1 1 1

q

m
mm

mk x k xx k
x x x

 
         

  
 

(14) 

 
 2

*
2

1 12 1 2*
2 2

x m m m m
x

s x ds 
 

 
 

(15)
 

To convert Eq. (15), we have 

 
 2

*
2

1
11 1 22

*2 2
22

x m m mm
x

s x ds
  

   
 

 

(16) 

Derivation of  2 1 2,V x x , we have 

   

 2
*
2

11 *
2 1 2 1 1 1 2 2

11
*

2 211
1

,

1

2

m

x m m m
x

m

V x x k x x x x

x s x ds

k

 





   

 
 

  
12

1 211 1
1

1 1
12 2

m

mm

x T x u

k
m




 

    
  
   

(17) 

Substituting Eq. (9) and Eq. (15) into Eq. (17), 
we have 

 
11 111

2 1 2 1 1 1 2
1

1, 2 mm mV x x k x x x
k

 
    

 

  
12

1 211 1
1

1 1
12 2

m

mm

x T x u

k
m




 

    
  
 

 
(18)

 According to lemma 2, we have 

 

* * *
2 2 2 2 2 2

1 1 11 1*
2 1 12 m m m

x x x x x x

x k x

  

  
 

    

  
 

(19) 

According to lemma 3, we have 
1

1 1 111 12
1 1 1 1

1
1*

1 11 1

m

m m m
cc mk x k x

m m

 



 

 
 
  
    

 

 

   

11 11 12 2
1 1

1 11 11 11
2 1 1 2 1

1 1

1 1

m
m m

mm m

mc ck x
m m

mc k m x c k m





 
 

   

 
  

   

   

(20) 

Where,  1
2 1 2 2

10 1 ,0
2

c k m m      . 
 

Substituting Eq. (20) into Eq. (19), we have
 

 

 

 

1 1 11 1 11
2 2 1 1

1111
2 1

2 1

1

m m m

m m

x mc k m x

c k m

 



  

 

  

 

 (21) 

Substituting Eq. (21) into Eq. (18), we have 

 

   

  

1 11 1 11 11 1
2 1 2 1 1 1

1
1 11 11 11

2 1 2
12

1 211 1
1

1, x 2 2

1 1

1 1
12 2

m mm m m

mm m

m

mm

V x k x x
k

mc m x c m

x T x u

k
m

 





   

   



 

   

   

    
  
 

 

  

11 1 111 1
2 1 2 1 1 1 1 2 1

11 21
1 11 1

1

1 2

, x 2

1

12 2

1

mm m m

mm

mm

V x k x x k x

a

k
m

x T x u

 

 

  



 

   

 
  
 

   

(22) 

Where,  
11 11

1 2
1

1= 2 1mma c m
k

    .  
Substituting Eq. (12) into Eq. (22), we have

   

 

  

 

  

11
2 1 2 1 1 1

1 1 1 11 1 1 11
1 1 2 1 1

12
1 211 1

1

1 11 1
1 2 1 1 2

12
1 211 1

1

, x 1

2 1

1 1
12 2

1

1 1
12 2

m

mm m m m

m

mm

m m

m

mm

V x k x

c m k x a

x T x u

k
m

k x a

x T x u

k
m



  



  



 

   



 

 



 

  

   

    
  
 

    

    
  
 

(23)

 
Where,  

11 1
2 1 12 1mma c m a

    . 
 

When u  is substituted in, we have 
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   
11

2 1 2 1 2 1 1
11 11

2 2

, x 1 m

mm

V x k x

a k

 

 

 



   

 
 

(24) 

Substituting Eq. (5) and Eq. (16)into Eq. (24), 
wehave

   

 2
*
2

1 11 1
2 22 22 1 2 1 2 1 1

1 1
11 1 2 2 12 1*2 2

2 2 2

, x 1 2

2

mm

m
x m m mm m
x

V x k V

k s x ds a

 



 


 

   

 
   
 
 


(25) 

Take  
1 1 1 1
2 2 2 2

1 2 1 2min 1 2 , 2m mk k  
      

  
, 

we have 

  
1 1
2 22 1 2 2, x mV x V 

 
  

 
 (26) 

In other words, the system (2) is stable in actual 
finite time under controller u . Similarly, according to 
literature [24], the system (1) is also stable in finite 
time. 

According to lemma 5, the convergence time sa-
tisfies 

 
 

 

1 1
2 2

0

0
1 1 1
2 2

mV x
T

m
 




   
   

(27)
 

Where, 00 1  . 

4  Simulation 

In this section, the simulation results of the sys-
tem (2) are presented, which are under the action of 
the controller and the influence of parameters on finite 

time stability of heating furnace temperature control 
system. 

4.1  Simulation Example 

The simulation results of the system (2) under 
the action of the controller are presented. The initial 
value is    1 20 1.5, 0 3x x   , and the time constant 

is selected as 1T  , and the parameters of the pow-

er-integral controller is selected as 3 ,
2

m   1 4,k   

2 5k  . At this point, the state response in example is 

shown in Fig.1. 
As shown in the state response curve above, the 

system (1) can achieve finite-time stability under the 
action of the finite-time plus power integral controller. 

4.2  Influence of Parameters on Finite-time 
Stability of Heating Furnace Temperature 
Control System 

For the system (1), the simulation verifies the in-
fluence of time constant T, gain K and time-delay  on 
finite-time stability of the system. Fixed gain K and 
time-delay , the state response at 0.1T  , 0.5T  ,

2T  , 5T   is shown in Fig.2-Fig.5. Fixed time 
constant T and time-delay  , the state response at 

2K  , 5K  is shown in Fig.6 and Fig.7. Fixed time 
constant T and gain K, the state response at =0.1 ,

=0.2  is shown in Fig.8 and Fig.9. 
It can be seen from Fig.2-Fig.5 that with the in-

crease of T, the convergence time of the system also 
increases. On the contrary, as T decreases, the con-
vergence time of the system decreases. Meanwhile, 

 

 
 

Fig.1  The State Response in Example 
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Fig.2  The State Response at T=0.1 
 
 

 
 

Fig.3  The State Response at T=0.5 
 

 

 
 

Fig.4  The State Response at T=2 
 

 

 
 

Fig.5  The State Response at T=5 
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Fig.6  The State Response at K=2 
 
 

 
 

Fig.7  The State Response at K=5 
 
 

 
 

Fig.8  The State Response at =0.1 
 
 

 
 

Fig.9  The State Response at =0.2 
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with the increase of T, the delay-time of the system 
decreases. On the contrary, with the decrease of T, the 
delay-time of the system increases. It can be seen from 
the state response curve that the smaller the T is, the 
larger the overshoot of the system state is. Therefore, 
the time constant T has an impact on the finite-time 
stability of the system. According to Fig.6 and Fig.7, as 
gain K increases, the stable time increases but not 
significantly. In accordance with Fig.8 and Fig.9, the 
larger the time-delay  is, the larger the overshoot of 
the system state is. In conclusion, appropriate para-
meters need to be set according to different require-
ments in the actual industrial process. 

5  Conclusion 

In this paper, motivated by the extended Lyapu-
nov finite-time stability theorem and the power integral 
control method, the power integral finite-time stabili-
zation controller is obtained. Sufficient condition for 
the finite-time stabilization of the heating furnace 
temperature control system is given. Simulation results 
show the effectiveness of the proposed method and the 
influence of time constant, gain and time-delay on the 
finite-time stabilization of the heating furnace tem-
perature control system. 
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