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Abstract: In order to improve the detection accuracy of chaotic small signal prediction models under the 

background of sea clutter, a distributed sea clutter denoising algorithm is proposed, on the basis of variational 

modal decomposition (VMD). The sea clutter signal is decomposed into variational modal functions (VMF) with 

different center bandwidths by means of VMD. By analyzing the autocorrelation characteristics of the decom-

posed signal, we perform instantaneous half-period (IHP) and wavelet threshold denoising processing on the 

high-frequency and low-frequency components respectively, and regain the sea clutter signals. Based on LSSVM 

sea clutter prediction model, this research compares and analyzes the denoising effects of VMD. Experiment 

results show that, the RMSE after denoising is reduced by two orders of magnitude, approximating 0.00034, with 

an apparently better denoising effect, compared with the root mean square error (RMSE) of the prediction before 

denoising. 
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1  Introduction 

Sea clutter signal[1] has always played a vital role 

in the field of weak signal detection. Sea clutter cha-

racteristics study and analysis is to improve the relia-

bility and accuracy of radar detection. There emerge 

higher and higher requirements for the reliability of 

radar detection technology, but all kinds of radars are 

susceptible to internal and external noise interferences. 

Therefore, denoising becomes an inevitable step[2]. In 

actual work, sea radars are interfered by its own mea-

surement noise and external noise (such as sea clutter). 

Due to the significant non-linear, non-Gaussian, and 

non-stationary characteristics of sea clutter, the impact 

on radar target detection is particularly prominent. 

Therefore, the study of sea clutter denoising has natu-

rally become the primary task in sea radar target de-

tection[3]. 

Denoising is to assign high weight to signal and 

low weight to noise to achieve the effect of highlight-

ing the signal itself. Traditional denoising methods, 

such as low-pass filtering and Wiener filtering, use 

statistical theory to design weights. These methods 

require certain prior knowledge and have no significant 

effects[4]. In 1965, Fast Fourier Transform (FFT) was 

proposed by J.W.Tuky[5] ,which is widely used in sig-

nal processing. Unfortunately, the denoising effect of 

non-stationary signals is not as expected. Until 1997, 
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Huang et al.[6] proposed the Hilbert-Huang transform 

(HHT) from the signal itself, which can adaptively 

decompose, analyze and process nonlinear and 

non-stationary signals. Meanwhile,the method can 

obtain the instantaneous frequency. In 1999, Huang[7] 

discovered when studying nonlinear water waves that 

the empirical mode decomposition (EMD) theory in 

HHT is prone to modal aliasing, which leads to errors 

in the intrinsic mode function (IMF) and loss of spe-

cific physical significance[8]. After that, J. Tang and 

others[9] discussed the empirical mode decomposition 

and instantaneous frequency solution theory of HHT, 

studied the denoising effect of decomposing the ECG 

signal using EMD, and verified the feasibility of HHT 

to remove ECG noise. In order to improve the EMD 

adaptive decomposition ability, Wu[10] changed the 

extreme point distribution by adding white noise to 

eliminate the modal aliasing effect, and obtained the 

upper and lower envelopes in line with the signal 

characteristics. In 2007, EMMD algorithm was intro-

duced when X.Sun and others[11] studying the signal 

detection of weak harmonics embedded in chaotic 

noise. It is suitable for the background of chaotic sig-

nals and strong Gaussian white noise[12]. In addition, on 

the basis of noise-assisted data analysis, Ye et al.[13] 

proposed the CEEMD method. By adding N pairs of 

noises with opposite signs to the signal to change the 

distribution of extreme points to suppress modal de-

composition and save calculation time. In 2014, a new 

adaptive decomposition theory: VMD was proposed by 

K. Dragomiretskiy[14], which can compensate for the 

defects of modal aliasing, false components and end 

effects in EMD, and has a solid theoretical foundation 

and better noise robustness[15].  

As far as sea clutter denoising is concerned, 

Haykin[16] used the three-point moving average method 

to denoise in his study of the chaotic sea clutter cha-

racteristics. Since it would change the signal perfor-

mances，it was questioned by some scholars. Flan-

drin[17] used EMD to decompose fractal Gaussian noise 

and found that EMD decomposition can be equivalent 

to a narrowband filter library to filter signals. In 2009, 

Kurian et al.[18] used reconstruction dynamic characte-

ristics and chaotic synchronization methods to estimate 

and detect weak target signals. By selecting appropri-

ate coupling coefficients, the mean square error of the 

detection results was significantly reduced. In 2018, 

when Y. Yan[19] studied the detection of low-altitude 

small targets under the background of sea clutter, she 

used the denoising method combined with CEEMD 

and wavelet transform to deal with target detection 

under different signal-to-noise ratios. The signal 

adaptive decomposition algorithm can only decompose 

the signal. And denoising makes use of noise signal 

distributions and useful signals for artificial screening. 

It is inevitable that some signal-containing components 

will be removed, which will affect the denoising effect.  

Therefore, the frequency bands of component 

signals can be distinguished by analyzing autocorrela-

tion characteristics of the decomposed signals. De-

noising processing methods are adopted，according to 

the usefulness ratio of high- and low-frequency com-

ponent signals. IHP denoising processing is used for 

high-frequency components with a high noise propor-

tion. This method was proposed by Fang[20] in his study 

of pressure wave denoising methods, and it has a better 

effect on processing signals with high noise contents. 

For low-frequency components, wavelet threshold 

denoising is preferred on account of the reconstruction 

effects and method performance index selections.  

This paper proposes a distributed sea clutter de-

noising algorithm based on VMD, which combines 

instantaneous half-period and wavelet transform to 

obtain pure sea clutter data. First, the low-dimensional 

sea clutter data is mapped to the high-dimensional 

phase space to facilitate the chaotic characteristics 

study of the sea clutter，through the chaotic phase space 

reconstruction. Then it checks the EMD adaptive de-

composition ability to obtain the decomposition level 

K, and setting it as the VMD decomposition level. 

Then VMD is uses to decompose the sea clutter signal 

into VMFs with different center bandwidths. By ana-

lyzing the autocorrelation characteristics of the de-

composed signal, this research performs IHP and 

wavelet threshold denoising for high-frequency and 

low-frequency components respectively. Finally, the 
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sea clutter signals are regained. It uses the mature and 

stable LSSVM sea clutter prediction model to compare 

and analyzing the VMD denoising effect. The model 

uses the prediction error to detect chaotic small targets 

submerged in the sea clutter background. The effect of 

the proposed denoising algorithm is verified by com-

paring the RMSE before and after denoising. 

2  Research Methodology  

2.1  EMD Algorithm Preprocessing 

As a time-frequency analysis method, EMD 

adaptively decomposes nonlinear and non-stationary 

signals [21]. This method adaptively decomposes the 

input signal into a finite number of linear and stable 

IMFs, in which each component contains the local 

characteristic signal of the original signal at different 

time scales. For a signal ( )x n  to be decomposed after 

being processed by EMD, it can be expressed as the 

aftermath of the sum of the modal components [22]: 

  1

( ) ( ) ( )
N

i
i

x n C n R n


             (1) 

Where ( )iC n  is the i-th IMF component, N  is the 

total number of IMFs, and ( )R n  is the margin. 

2.2  Variational Mode Decomposition 

In order to solve the problems of modal aliasing, 

false components and end effects in EMD [23], it is 

assumed that each IMF has a limited bandwidth with 

different center frequencies. By converting to the con-

struction and solution of the variational problem, the 

sum of the estimated bandwidth of each IMF is mini-

mized. 

Constructing the variational problems ： After 

VMD performs modal separation on the input signal, it 

determines the frequency center and bandwidth of each 

VMF through continuous iteration to obtain a set of K 

VMFs: 1 2{ } { , ,..., }, 1, 2,...,k ku u u u k K  . Perform the 

following three steps for each VMF: 

Step1: Perform Hilbert-Huang transformation on 

each modal component to obtain the analytical signal 

of each modal component, the purpose is to obtain its 

unilateral frequency spectrum.  
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Step2: Mix an estimated center frequency kjw te  

with the analytical signal of each modal component, 

and convert the spectrum of the modal component to 

the corresponding base band. 
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Step3: To estimate the bandwidth of each modal 

signal, the demodulated signal is processed by H1 

Gaussian smoothing. The sum of the modal compo-

nents is equal to the original input signal f  as a con-

straint condition, so the following variational con-

straint model expression is obtained.  
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Where 1 2{ } { , ,..., }k kw w w w  is the center frequency 

of each modal component ku . 

Variational problem solutions： In order to ob-

tain the optimal solution of the above-mentioned vari-

ational constraint model, a secondary penalty factor 

and a Lagrange multiplication operator with strong 

constraint ability are introduced. The variational con-

straint problem is transformed into a variational un-

constrained problem, and the following expression is 

obtained: 

2
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Where ( )t  is the Dirac distribution, and ( )f t  

represents the original input signal. 

VMD uses the Alternating Direction Method of 

Multiplication Operator (ADMM)[24] to solve the vari-

ational problem, alternately thinking about , ,k k ku w  , 

and seeking the result of modal decomposition that 

meets the constraints. The update formula of 
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, ,k k ku w   as follows: 
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3  Distributed Denoising Algorithm 

In order to fit the decomposition signal ability of 

VMD and effectively retain useful signals, it is ne-

cessary to deal with all decomposition components in a 

targeted manner. The autocorrelation function [25] is 

used to reveal the correlation degree of the signal itself 

at different time points, and use the autocorrelation 

characteristics to filter high and low frequency com-

ponents. For high-frequency components， noise is 

relatively high, and IHP is used for denoising. Consi-

dering the reconstruction effect and the choice of me-

thod performance indicators, the wavelet threshold 

method is preferred to process low frequency compo-

nents. 

3.1  Instantaneous Half-Period 

In most general cases, the signal structure cor-

responds to the slow time-varying data and the useful 

signal frequency is often lower than that of the noise [26]. 

Thus, it can be assumed that the signal dominates the 

oscillation IHP longer than the noise does. According 

to this concept, a threshold is set to preserve the most 

important signal structure retrieved from noise. That is, 

the waveform between two adjacent zero-crossing 

points that is considered to be signal-dominated oscil-

lation will be retained. And the waveform between two 

adjacent zero-crossing points that is considered to be 

noise-dominated oscillation will be replaced by zeros. 

The mathematical expression of this process is: 

1( ),ˆ ( ) ,
0,

j
j ji i

i i i
C n T thr

C n ZP n ZP
others

   
  

  (9) 

Where ( )iC n  represents the i-th VMF, j
iT  is the 

middle j-th IHP in ( )iC n , and j
iZP  represents the 

middle j-th zero-crossing point in ( )iC n . 

The threshold choice in this method is matter 

great importance to the denoising effect. A large value 

thr  will result in over-smooth denoising, so that the 

low-frequency oscillation containing the target signal 

will be eliminated. On the contrary, a too small thr  

will affect the quality of the denoising signal, that is, 

the noise is not completely removed. 

Combined with the Nyquist sampling theorem, a 

method for selecting the best threshold is proposed. 

According to the sampling theorem, the signal is sam-

pled at a sampling rate sf  that is not less than twice 

the highest frequency mf  of the signal[27], and the 

discrete sampling value obtained can accurately de-

termine the original signal. The optimal threshold se-

lection expression is: 

 

1

2 m

thr
f


 

               (10) 

Considering that the frequency range of the target 

signal is 0~5kHz, the optimal threshold is set to 0.1ms. 

3.2  Distributed Denoising Algorithm for Sea 

Clutter Based on VMD 

Using chaotic phase space reconstruction to pre-

process the sea clutter signal, and then obtain VMFs 

through VMD processing. According to the autocor-

relation characteristics of the signal components, we 

perform IHP and wavelet threshold denoising 

processing on the high-frequency and low-frequency 

components respectively. Finally, the denoising signal 

is reconstructed. The steps are as follows: 

Step1: Use the classic C-C method to reconstruct 

the phase space, and use the processed chaotic time 

series as the denoising signal; 

Step2: Initialize 0 0 0{ } { } { }k ku w 、 、  and n; 

Step3: Iteratively update in the frequency domain 

according to formula (6) and (7), and iteratively update 

y according to formula (8); 
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Step4: Determine whether the decomposed 

variable meets the given precision  , if 

2 21

2
2

ˆ ˆ /n n n
k k k

K

u u u    , the iteration stops; other-

wise, return to step (3); 

Step5: At the end of the iteration, the VMFs after 

VMD decomposition are obtained; 

Step6: Analyze the autocorrelation characteristics 

of VMFs to filter out high-frequency noise components 

and low-frequency signal components; 

Step7: Perform IHP processing on high frequency 

noise components, and perform wavelet threshold 

denoising on low frequency signal components; 

Step8: Reconstruct the processed high-frequency 

and low-frequency components, and output denoising 

sea clutter. Use LSSVM to establish a time series 

forecast model, and compare and analyze the forecast 

effect before and after denoising. 

4  Experiments and Analyses  

In order to verify the distributed sea clutter de-

noising algorithm based on VMD, the chaotic phase 

space reconstruction and the single-step prediction 

based on the LSSVM sea clutter prediction model are 

used to evaluate the denoising effect by comparing the 

RMSE of the prediction before and after denoising. 

The sea clutter data comes from the IPIX meas-

ured radar [28], the transmitting frequency is 9.39GHz, 

the antenna height is 30m, the pulse repetition fre-

quency is 1kHz, and the VV polarization method is 

adopted. Each group of data contains 131072 sampling 

points, the antenna gain is 45.7db, and the sig-

nal-to-noise ratio of the selected data is in the range of 

0-16db. 

 

 
 

Fig.1  Flow Chart of Distributed Sea Clutter Denoising Based on VMD 
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4.1  Sea Clutter Prediction of LSSVM Model 

Before Denoising 

In order to verify the effectiveness of the distri-

buted sea clutter denoising algorithm based on VMD, it 

is in contrast with the predicted results after denoising, 

so the sea clutter prediction without denoising LSSVM 

model is carried out. 

The experiment uses 54# sea clutter target dis-

tance unit with 2000 sample points, selects the first 

1000 points as the training sample set, and the last 1000 

points as the prediction verification set. And perform 

phase space reconstruction and LSSVM prediction. 

The experimental results are shown in Fig.2. The pre-

dicted signal and the verification signal are basically 

consistent. The prediction error at the 500th to 550th 

point is large, indicating that there is a small target. In 

Fig.3, it can be seen that there are obvious spikes in the 

prediction error, which shows that the LSSVM model 

can detect the weak signal submerged in the sea clutter 

background, and the RMSE of the prediction result is 

0.0125. 

 

 

Fig.2  Real and Predicted Values of Unnoised Sea Clutter 

 

 

Fig.3  Prediction Error Spectrum before Denoising 

4.2  LSSVM Model Prediction after VMD 

Denoising 

In order to ensure the decomposition effect of 

VMD, first use EMD to adaptively decompose the 54# 

sea clutter to obtain the optimal decomposition level K, 

and use K as the number of decomposition levels for 

VMD, where K=9. Fig.4 is a decomposition diagram of 

the sea clutter signal based on the VMD algorithm. The 

figure indicates that the sea clutter is divided into 9 

modal components m1-m9. In order to distinguish the 

high and low frequency bands of the decomposed 

components, the autocorrelation function of each 

component is calculated separately. In Fig.5, according 

to the characteristics of the autocorrelation function, 

the first four VMFs are divided into low-frequency 

components, and the last five VMFs are divided into 

high-frequency components. 

According to the distinction between high and 

low frequencies, different denoising methods are se-

lected for processing. For the four low-frequency 

components m1~m4, wavelet threshold denoising is 

 

 
 

Fig.4  Sea Clutter Signal Decomposition Diagrams 
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Fig.5  VMFs Autocorrelation Characteristic Diagrams 

 

selected, and the minimax threshold criterion suitable 

for most useful signals is adopted. For the five 

high-frequency components of m5~m9, the IHP me-

thod proposed in this paper is selected for processing. 

Reconstruct the processed components to get the de-

noising sea clutter signal. Draw the waveforms before 

and after the sea clutter denoising, and subtract the two 

signals to get the removed noise signal. 

In Fig.6, some flaws in the sea clutter signal have 

been removed, and the overall signal has become much 

smoother than before, but the overall characteristics of 

the sea clutter without significant changes. In order to 

further verify the effectiveness of the distributed sea 

clutter denoising algorithm based on VMD, a sea 

clutter prediction model of LSSVM is established. 

 

Fig.6  Original Sea Clutter Signal and Sea Clutter  

Signal after Denoising 
 

 

Fig.7  Real and Predicted Values after Denoising 
 

After the chaotic phase space reconstruction of the 

denoised sea clutter signal, the prediction effect after 

denoising is analyzed. 

According to the experimental steps of the control 

group, the denoised sea clutter data was normalized, 

phase space reconstructed, and single-step prediction 

based on the LSSVM model. It can be seen from Fig.7 

that the LSSVM model can detect small target signals 

submerged in the background of sea clutter, and the 

signals of the prediction set and the test set are almost 

identical.  

From the prediction error spectrum in Fig.8, it can 

be seen that the target signal position is between 500 

and 550 sample points. At the same time, the spectral 

peak of this segment has fewer defects than before 
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denoising, and the target signal position can be found 

more intuitively and accurately. The RMSE of the 

predicted result is 0.00034, which is lower than before 

denoising get RMSE0.0125 two orders of magnitude. It 

can prove the effectiveness of the distributed sea clutter 

denoising algorithm based on VMD. 

 

 

Fig.8  Prediction Error Spectrum after Denoising 

 

4.3  Comparative Experiment 

In order to further analyze the effectiveness of the 

distributed sea clutter denoising algorithm based on 

VMD, it is compared with Ref. [29],[30]. The results 

are shown in Table 1. 

 
Table 1  Comparison of Sea Clutter Prediction Effects by 

Different Denoising Methods. 

Contrast 
EMD Hard  

Denoising [29] 
EEMD+SG 
Filtering [30] 

Proposed
Algorithm

predict RMSE 
before Denoising 

0.0124 0.0119 0.0125 

predict RMSE 
after Denoising 

0.0032 0.0028 0.00034

 
Although the algorithm proposed in the literature 

has improved the accuracy of the prediction before 

denoising, there is still a gap compared with the de-

noising algorithm proposed in this article. Ref. [29] 

uses EMD hard denoising, directly discarding the noise 

components that do not meet the signal characteristics, 

which is subjective and the denoising effect is unstable. 

Ref. [30] uses the EMMD algorithm combined with 

Savitzky-Golay (SG) to denoise, which only deals with 

the noise component and ignores the clutter in the 

signal component. It has a smaller improvement in 

denoising effect than the Ref. [29]. This paper uses the 

advantages of VMD to decompose the signal, and 

combines IHP and wavelet threshold to process all 

components. Compared with the previous two methods, 

the denoising effect is significantly improved. How-

ever, due to the preparation of pre-processing and the 

separate processing of components in different fre-

quency bands, the complexity of the algorithm has also 

increased, and the denoising rate has been reduced. In 

the following research, we can consider optimizing the 

algorithm structure and writing an algorithm toolbox. 

In summary, the distributed sea clutter denoising 

algorithm based on VMD has significantly improved 

denoising effect, and the algorithm complexity has also 

increased. Generally speaking, compared with the 

traditional decomposition and denoising algorithm, the 

denoising effect is outstanding, especially when deal-

ing with chaotic small target signals under the back-

ground of sea clutter. 

5  Conclusion 

This paper proposes a distributed denoising al-

gorithm based on VMD for sea clutter. By analyzing 

the autocorrelation characteristics of the decomposed 

components, combining IHP and wavelet threshold 

denoising to process high and low frequency compo-

nent signals separately. Due to the non-recursive nature 

of the VMD algorithm, IHP and wavelet threshold 

denoising process the high and low frequency com-

ponents simultaneously. Finally, the chaotic sea clutter 

sequence prediction model built by LSSVM verifies 

the effectiveness of the algorithm. The results confirm 

that small targets can be detected, and the predicted 

RMSE is 0.00055, which is two orders of magnitude 

lower than before denoising. Compared with the tradi-

tional decomposition denoising algorithm, the method 

proposed in this paper has better denoising effect and 

lower RMSE of the prediction result. 
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Although the VMD-based sea clutter distributed 

denoising algorithm has obvious denoising effects, the 

overall complexity of the algorithm has increased a lot 

due to the pre-processing preparation and the denoising 

of all components, resulting in a low signal processing 

rate. It is advised to consider optimizing the algorithm 

structure, improving the efficiency of algorithm 

processing, writing algorithm toolbox, and simplifying 

the difficulty of operation in future studies. 
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