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Abstract: As the field of autonomous driving evolves, real-time semantic segmentation has 
become a crucial part of computer vision tasks. However, most existing methods use lightweight 
convolution to reduce the computational effort, resulting in lower accuracy. To address this 
problem, we construct TBANet, a network with an encoder-decoder structure for efficient 
feature extraction. In the encoder part, the TBA module is designed to extract details and the 
ETBA module is used to learn semantic representations in a high-dimensional space. In the 
decoder part, we design a combination of multiple upsampling methods to aggregate features 
with less computational overhead. We validate the efficiency of TBANet on the Cityscapes 
dataset. It achieves 75.1% mean Intersection over Union (mIoU) with only 2.07 million 
parameters and can reach 90.3 Frames Per Second (FPS). 
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1 Introduction 
Semantic segmentation is defined as one of the tasks 

in computer vision that labels and classifies each pixel of 
the input image. Since it is a computationally intensive 
task for pixel-level classification, it faces challenges such 
as high computational overhead and high parametric load. 
Traditional semantic segmentation models, such as 
VGGNet[4] and SegNet[5], have high accuracy, but the 
huge number of parameters and slow inference speed 
make it difficult to meet the requirements for real-time in 
some fields. In order to solve this problem, the research of 
lightweight and real-time segmentation networks is 
essential. 

Many real-time semantic segmentation networks 
have been presented for medical image processing[1], 
spatial robotics[2], autonomous driving[3] and surveillance 
environments[4]. The existing mainstream network 
architectures are mainly divided into two categories: (i) 
Bilateral structure which usually uses a high-resolution 
shallow spatial branch and a low-resolution deep 
semantic branch to extract features, and finally fuse the 
information descriptors by a feature fusion module, such 

as the BiseNet series[5-7], DFANet[8], and ContextNet[9]. 
Although such networks have improved in accuracy over 
single backbone networks, the computational and 
parametric quantities have also greatly increased. (ii) 
Encoder-decoder architecture, which consists of 
downsampling and convolutional layers in the encoder 
part to extract the features. In the decoder part, 
upsampling layers are designed to recover the image 
resolution and compensate for the lost details, such as the 
DeepLab series[10-12], LEDNet[13], and FCN[14]. Networks 
with such architectures tend to have many skip 
connections, which significantly increases the memory 
access cost and is not conducive to deploying the network 
to mobile devices. Obviously, for an encoder-decoder 
architecture network, improving speed while maintaining 
high accuracy is a pressing problem.  

To this end, we propose the TBANet based on 
encoder-decoder architecture. Compared with other 
methods, our network excels in speed, accuracy, and 
parameters, as shown in Fig.1. The horizontal axis of 
Fig.1 represents FPS, the vertical axis represents mIoU 
and the radius of a circle is proportional to the number of 
parameters. From Fig.1, it can be seen that TBANet 
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performs well on the Cityscapes dataset. The overall 
structure of TBANet is shown in Fig.2. Since the existing 
feature extraction modules are large and cannot meet the 
demand for real-time semantic segmentation of road 
scenes, we propose the Triple-Branch Asymmetric (TBA) 
and ETBA modules. We carry out the TBA module with 
two branches using dilation convolution and channel split 
to speed up and the branch using 3×3 convolution to 
improve segmentation accuracy. The third branch uses 
ordinary convolution for feature extraction from the input 
image. Besides, channel shuffle is used to enhance the 
exchange of information between channels. In addition, 
we designed and implemented the ETBA module, which 
improves the level of information fusion between 
asymmetric convolutions based on the TBA module to 
meet the needs of gradually growing communication for 
information between channels in the deep network. The 
ETBA module adds an additive operation to the 
asymmetric convolution, enhancing inter-channel 
communication, resulting in a finer segmentation. In 
addition, ECA[33] and PSA[34] are applied to improve 
segmentation accuracy. We apply all the above modules to 
the encoder part. Furthermore, a Multiple-Methods 
Aggregation (MMA) module is applied to combine 
feature maps of the different stages. The module takes full 
advantage of multiple upsampling methods, so it can 
restore image resolution accurately. 

In summary, the contributions of this paper are as 
follows: 

• A Triple-Branch Asymmetric (TBA) module is 
proposed to fleetly extract edge and detail information 
with low computing complexity. It uses convolution with  

a kernel of 3×3 for fast concatenation, which effectively 
reduces the gridding artifacts due to dilated convolution. 

• An Enhanced Triple-branch Asymmetric (ETBA) 
module is modified from the TBA module. This module is 
designed for image feature extraction in the later stages of 
the network. The module has a powerful semantic feature 
characterization capability because it obtains an 
abundance of receptive fields and frequent 
communication between channels. 

• A Multiple-Methods Aggregation (MMA) module 
using two upsampling methods is employed to aggregate 
low-level spatial information and high-level semantic 
information. At the same time, the resolution of inputs is 
recovered with less computational effort. 

 

 
 

Fig.1 Accuracy, speed, and parameters comparisons on the 
Cityscapes test set 

 

 
 

Fig.2 Overview architecture of the proposed TBANet 
 

2 Related work 
With the development of mobile terminals, real-time 

semantic segmentation tasks are gaining more and more 
attention. This section introduces the three categories 
most relevant to our work. 

2.1 Real-time semantic segmentation 
Define Real-time semantic segmentation has 

received widespread attention due to its advantages such 
as low device requirements and fast inference, and many 
network models with excellent performance already exist. 
FCN[14]  proposes to replace the fully connected layer 
with the convolution, which highly reduces the 
computation. ENet[17] uses dilated convolution and 
asymmetric convolution to remove redundancy. 
ESPNet[18] decouples the convolution to achieve a good 
result. ICNet[19] processes images of different resolutions 
separately and finally fuses the acquired feature maps to 
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have high accuracy. To excel in accuracy and speed, 
BiSeNetV2[7] designed a bilateral structure for details and 
semantic information and also proposed an efficient 
aggregation module to fuse different feature maps. 
STDC[20] improved the situation that the semantic 
branching perceptual field of BiSeNetV2[7] is not rich by 
designing a short-term dense connection module. 
DDRNet[49] designed a bilateral fusion module to 
facilitate the fusion of detail and contextual information to 
improve its accuracy. 

2.2 Encoder-decoder architecture 
The encoder-decoder architecture is common in 

computer vision. U-Net[21] designed a symmetric 
encoder-decoder architecture, which has better accuracy 
but the model size is too large and not suitable for 
real-time semantic segmentation tasks. DTT[54] uses an 
encoder-decoder architecture in video recognition. Most 
of the subsequent networks adopt asymmetric 
encoder-decoder architecture to reduce the model size by 
designing lightweight and efficient decoders, such as 
ENet[17], RefineNet[22], DABNet[23], etc. Most networks 
with this structure fuse shallow and deep feature maps by 
skip connections, which promotes network convergence 
but also largely increases the inference cost. 

2.3 Effective feature extraction method 
The selection of the receptive fields is essential 

because of the variable scales of objects. Many networks 
are innovative in feature extraction modules, such as 
EdgeNet[50]. There are some networks[51,52] that use 
multidimensional features to improve network accuracy. 
PSPNet[24] designed the Pyramid Pooling Module (PPM) 
to obtain multi-scale contextual information features. 
Shufflenet V2[25] uses channel split to improve the model 
inference speed. ESPNet[26] adopts a pyramid module 
with a mass of skip connections EADNet[27] that uses 
asymmetric depth-separable dilated convolution to form a 

pyramidal pooling module for extracting multi-scale 
contextual information. However, the existing feature 
extraction modules are not designed for pre and 
late-network characteristics. To solve this problem, we 
propose TBA and ETBA modules.  

3 Method 
In this section, we focus on the composition and 

structure of our proposed TBANet. First, we present how 
the lightweight feature extraction TBA and ETBA 
modules are constructed. Then, we show the design of the 
efficient feature fusion MMA module. Finally, we present 
the overall architecture of TBANet.  

3.1 Triple-branch asymmetric module 
We propose the TBA module with the aim of 

extracting image features in the pre-semantic 
segmentation network. This module can extract features 
of input images efficiently with limited hardware device 
resources and time. The structure of the TBA module is 
shown in Fig.3(c). 

To improve the learning ability of the module, the 
TBA module consists of three main branches. The input of 
the two branches on the left is generated from the original 
input by channel split. The channel split operation 
averages the input segmentation along the channel axis, 
which can notably reduce the inference time. Meanwhile, 
many real-time semantic segmentation networks have 
demonstrated the effectiveness of asymmetric 
convolution, such as ERFNet[30] (Fig.3(a)), DABNet[23] 
(Fig.3(b)), EDANet[28], etc. We employ asymmetric 
depth-wise separable convolution in the two branches on 
the left, which is an idea that can decouple a 
two-dimensional convolution into two one-dimensional 
convolutions. Assuming the input feature map size is and 
the output map size is Cin×H×W. Meanwhile, C, H and W 

 

 
 

Fig.3 The different structures of feature extraction modules. (a)Non-bottleneck-1D module. (b)DAB module. (c)TBA module. (d)ETBA 
module. "Conv" denotes convolution, "Dconv" denotes depth-wise separable convolution, and "d" denotes different dilation rates 
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represent channels, height and width respectively. P is 
parameters and Com is computational effort. The standard 
3×3 convoltion is following formula: 

 P3×3=3×3×Cin×Cout# (1) 
 Com3×3=3×3×H×W×Cin×Cout# (2) 
The 3×3 asymmetric depth-separable dilation 

convolution is following formula: 
 PADD=2×3×Cin+Cin×Cout# (3) 
 ComADD=2×3×H×W×Cin+Cin×Cout×H×W #  (4) 
The diversity of target object sizes for semantic 

segmentation is such that the network needs to have 
size-rich receptive fields to capture features efficiently. To 
address this need, we use different dilation rates on the 
two branches to vary the size of the receptive field with a 
small computational overhead. In the pre-network stage, 
the image details are more complete, we want the TBA 
module to focus on small objects and edge segmentation. 
So, we set a small dilation rate. Considering that the 
dilation convolution loses some pixel information, we use 
a 3×3 convolution operation on the third branch to 
compensate for the loss. Also, it can capture the features 
of short-range objects. Inspired by ResNet[31], to solve the 
gradient disappearance problem, we used the residual 
concatenation method, which performs a channel concat 
operation on the input and the output from the three 
branches. Then the number of channels is reduced using 
1×1 convolution to decrease the computational burden. 
Finally, to enable information communication between 
channels, we use the channel shuffle strategy. 

3.2 Enhance triple-branch asymmetric module 
With the deepening of the network and the increasing 

number of image channels, communication between 
channels is especially important. Based on this, we design 
the ETBA module to better extract the high-level semantic 
information of the input. The structure of the ETBA 
module is shown in Fig.3(d). 

In the late stage of the semantic segmentation 
network, the number of channels of the feature image is 
generally high and contains rich semantic information. 
Different from the TBA module, the two left branches of 
ETBA use asymmetric dilation convolution with a 3×3 
convolution kernel. This modification avoids the damage 
of deeply separable convolution on the information flow 
between channels and ensures the accuracy of the network. 
It is worth noting that we also add the feature map 
addition operation inside the asymmetric dilation module 
significantly improves the module's ability to extract 
semantic information with less computational overhead. 
This part is expressed as formulas: 

 x1=f3×1, d1(x1,1)+f3×1, d2(x1,2)# (5) 
 y1=f1×3, d1(x1)# (6) 
 y2=f1×3, d2(x1)# (7) 

where x1,1 and x1,2 mean the two outputs of the channel 
split operation. y1 and y2 represent the output of the left 
and middle branch. f3×1 and f1×3 represent the two steps of 
asymmetric convolution. d1 and d2 denotes different 
dilation rates. In order to have a richer receptive field, the 

dilation rates of the ETBA module are larger than those of 
the TBA module. The ETBA module is more suitable for 
feature extraction in the later stages of the network. 

3.3 Multiple-methods aggregation module 
Common semantic segmentation networks usually 

use a more complex decoder structure to reach a 
high-precision segmentation target, and this approach is 
not suitable for real-time semantic segmentation tasks. To 
address this problem, we propose a multiple-methods 
aggregation (MMA) module, as shown in Fig.4. 

 

 
 

Fig.4 The structure of the multiple-methods aggregation module. 
"Conv" denotes convolution, and "Interpolation" denotes bilinear 

interpolation 
 

The previous BiAttnNet[3] uses bilinear interpolation 
for upsampling, which is a low computational cost 
upsampling method. However, if this method is used 
singly, a large amount of high-dimensional information 
may be lost, which affects the network segmentation 
accuracy. Inspired by the operation of FCN[14] using 
transposed convolution to recover image information, we 
use transposed convolution to recover the main feature 
image elements. This is a learnability upsampling method 
that is more in line with the characteristics of deep 
learning networks. So the MMA module combines the 
above two upsampling methods to recover the image 
resolution efficiently. In addition, the decoder we 
designed incorporates three different stages of feature 
maps, and the feature reuse rate reaches a high level. We 
select the output of the ECA block containing rich edge 
details as the x1 and make it pass through a 1×1 
convolution layer to normalize the number of channels. x2 
and x3 are processed using transposed convolution to 
normalize their dimensions. Because the late image 
resolution is extensive, using transposed convolution 
causes expensive computational costs and severely delays 
the network inference, so the bilinear interpolation 
method is used to process the feature maps after the fusion 
of the three branches. The expression for MMA is as 
follows: 

 y=F{Con(x1)+T(x2)+T(x3)}# (8) 
Here, F means bilinear interpolation, Con is 

convolution computations, and T denotes transposed 
convolution. x1 is the output of the ECA module. The two 
PSA block outputs are used as x2 and x3 in turn. 



76 Yazhi Zhang et al: Triple-Branch Asymmetric Network for Real-Time Semantic Segmentation of Road Scenes 
 
 
 
 
 

 

3.4 Network architecture 
The proposed triple-dilation asymmetric network for 

real-time semantic segmentation has two main 
architectures: encoder and decoder, as shown in Fig.2. 
more detailed architectural information on TBANet is 
shown in Table 1.  

 
Table 1 The architectural details of TBANet 

Stage Type Mode Channel Output 

Encoder 

Initial Block Stride=2 32 256×512

ECA - 35 256×512

Downsample Stride=2 64 128×256

TBA×3 Dilated=(2,5) 64 128×256

PSA - 128 128×256

Downsample Stride=2 128 64×128

ETBA-1×3 Dilated=(3,7) 128 64×128

ETBA-2×3 Dilated=(9,11) 128 64×128

PSA - 256 64×128

Decoder MMA - 19 512×1024

 
TBANet designed the model with fewer layers to 

reduce the risk of overfitting. The activation function of 
PReLU and batch normalization layer are also added to 
the model, which enhances the expressive ability of the 
model to handle the distribution of different data better. 

a) Downsampling: The input image is fed to 
TBANet first by an Initial Block consisting of three 3×3 
convolutional layers cascaded, where the first 3×3 
convolution has a step size of 2, thus completing the 
downsampling of the image. It is worth mentioning that in 
TBANet, we only perform three downsampling 
operations on the images, which ensures the accuracy and 
real-time performance of our network. For the other two 
downsampling tasks, we use the Initial Block of ENet[17] 
as the Downsample Block, which reduces the image 
resolution with less detailed information lost.] 

b) Mechanism of attention: Networks such as 
SENet[43] and DANet[44] have demonstrated the 
importance of using attention in the network. There is a 
wealth of high-level semantic information contained in 
the channels, which is vital for the segmentation task. To 
boost the information shared between channels, we design 
to add ECA[33] behind Initial Block and use PSA[34] 
behind TBA and ETBA which can fuse different scales of 
contextual information and is more suitable for 
application in deeper network layers.The output of 
PSA[34]is as follows: 

 PSA(X)=Ach(X)ʘch X+Asp(X)ʘsp X# (9) 
Where Ach and Asp are the output of channel-only 

branch and spatial-only branch, respectively.The ʘch is a 
channel-wise multiplication operator and ʘsp is a 
spatial-wise multiplication operator. 

4 Experiments 
In this section, two datasets (Cityscapes and CamVid) 

are used to test the performance of our network. We 
present the specific details and relevant parameters in our 
experiments. We perform ablation and comparison 
experiments on the designed modules to verify their 
effectiveness of the modules. Finally, we compare the 
experimental results of TBANet and state-of-art networks 
in various aspects. 

4.1 Datasets 
Cityscapes[15] is a large dataset for the semantic 

understanding urban street scenes with high pixel 
resolution. It contains 5000 images of city street scenes 
from 50 cities. In addition, it also has 19998 images with 
rough annotations, which we did not use in our 
experiments. Each image in the dataset has a resolution of 
1024×2048, and there are 19 classes for semantic 
classification. 

 
Table 2 Ablation study results about TBA and ETBA on 

cityscapes validation set 

Feature Extraction Module mIoU
(%) FPS Params

(M) 

TBA TBA 71.4 94.5 1.75

ETBA ETBA 74.7 73.1 2.10

Non-bottleneck-1D Non-bottleneck-1D 68.5 88.0 1.40

DAB module DAB module 70.8 100.6 1.00

TBA-r = [2,4] ETBA-r = [4,8],[8,16] 74.2 89.3 2.07

TBA-r = [2,5] ETBA-r = [5,9],[9,13] 75.1 89.8 2.07

TBANet 75.7 90.3 2.07

 
CamVid[16] is an autonomous driving scene 

understanding dataset with 11 semantic categories. 
CamVid is a smaller dataset that contains only 701 images 
(367 of them as a training set, 101 as a validation set, and 
233 for testing) with an image resolution of 360×480. 

4.2 Implementation details 
We conducted experiments on Pytorch 1.7.0 with an 

NVIDIA RTX2080Ti GPU, using stochastic gradient 
descent to train the network. A "poly" learning rate 
strategy with momentum 0.9, and weight decay 2e‒4 was 
used during training, and the initial learning rate was set 
to 4.5e‒2, the learning rate was calculated as 

0.9

1initial
max

interlr
inter

 
× − 
 

. Regarding the initial loss function, 

we use the cross-entropy loss: 
1

1L log( )
M

ic ic
i C

y p
N =

= −  . 

We reduce the resolution of the input image, which 
greatly reduces the memory footprint. We crop the input 
image to 512×1024. Unlike the Cityscapes dataset, we 
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adopt the weight decay 1e‒3 on the CamVid dataset. 
Regarding the data enhancement strategy, we used 
random cropping, random horizontal flipping, and 
random scaling to enhance the data. Regarding the 
conclusion section, we evaluate the network performance 
regarding mIoU, FPS, and parameters. 

4.3 Ablation Studies 
In this chapter, to demonstrate the effectiveness of 

the modules in TBANet, we perform ablation experiments 
on the Cityscapes dataset. 

a) Ablation Study for TBA and ETBA: To verify that 
the TBA module is suitable for shallow network feature 
extraction and the ETBA module is suitable for the deep, 
we designed comparison experiments. As shown in Table 
2, when using TBA alone as the feature extraction module 
in the decoder, the accuracy is substantially reduced by 
4.3%, although there is a slight improvement in FPS and 
parameters. The TBA module possesses a small receptive 
field and cannot meet the growing demand for 
cross-channel information exchange in the later stages of 
the network, so the network segmentation accuracy is 
poor when the TBA module is used alone. When using 
ETBA alone, the performance in terms of mIoU, FPS and 
parameters is poor. This is due to the fact that at the 
beginning of the network, the size of the channel 
dimension of the feature map is small and the feature 
extraction ability of the network is weak, so the ETBA 
module enables the channel dimension to exchange 
information frequently may increase the impact of the 
wrong prediction information, which impairs the 
segmentation effect of the network. In order to verify the 
efficiency of TBA and ETBA modules, we use the 
non-bottleneck 1D module and DAB module respectively 
in Fig.3(a) and Fig.3(b) instead of TBA and ETBA. It can 
be learned from Table 2 that the accuracy drops from 
75.7% to 68.5% and the speed slows down when using the 
non-bottleneck 1D module as the feature extraction 
module. When the DAB module is used as the feature 
extraction module, it improves 10.3 FPS, but the accuracy 
is destroyed substantially. It can be seen that the TBA and 
ETBA modules are complementary and efficient.  

b) Ablation Study for dilation rates: The list of 
dilation rates used in TBA and ETBA in TBANet is {[2,5], 
[3,7], [9,11]}, and to prove the effectiveness of this 
dilation rate, we design comparison experiments for 
different dilation rates cases as shown in Table 2. 
EFRNet[41] argued that large multiplying dilation rates 
could obtain better results; however, applied in TBANet, 
only 74.2% mIoU was obtained. We visualized the output 
using multiplying dilation rates and found that the picture 
produces a gridding effect. After we set the dilation rate 
according to the coprime rules, the gridding effect of the 
segmented image of TBANet becomes smaller. We also 
experimented with large coprime dilation rates with 0.6% 
lower accuracy than TBANet. 

c) Ablation Study for MMA: In the decoder section, 
we designed the MMA module to recover the image 
resolution. To verify the performance of this module, we 

use bilinear interpolation instead of MMA. As shown in 
Table 3, the results prove that MMA is more suitable to 
TBANet than the single use of bilinear interpolation, with 
a higher 4.7% mIoU at a low time consumption. It can be 
seen that the MMA module we designed is beneficial to 
TBANet. 

 
Table 3 Ablation study results about MMA and attention on 

cityscapes validation set 

ECA PSA-1 PSA-2 MMA mIoU(%) FPS

√  √ √ 73.2 95.4

√ √  √ 71.7 94.2

 √ √ √ 74.2 91.8

√ √ √  71.0 88.9

√ √ √ √ 75.7 90.3

 
d) Ablation Study for attention: In the encoder part, 

we used ECA[33] in the shallow phase of the network and 
applied PSA[34] after TBA and ETBA. PSA-1 and PSA-2 
represent PSA modules added after the TBA and ETBA 
modules, respectively. Experiments are implemented for 
each attention module separately. As shown in Table 3, 
each attention module has different degrees of influence 
on network accuracy, among which PSA-2 has the largest 
influence on mIoU up to 4%. Although removing the 
attention module resulted in a small increase in the 
network's speed, it sacrificed the segmentation accuracy 
of the network, which is not what we expected. And a 
series of comparative experiments have been done on the 
location of the PSA module, the experimental results are 
shown in Fig.5. The horizontal coordinates of the image 
represent the location where the PSA module was placed, 
and the vertical coordinates represent mIoU. After fixing 
the PSA-2 position constant and placing PSA-1 in the first 
TBA and second TBA modules, respectively, the network 
segmentation accuracy in these cases decreased slightly. 
When the PSA-1 position is constant and the PSA-2 
module position is changed, the further the PSA-2 is 
placed, the higher the network accuracy. The experiments 
proved that the PSA module has the best effect when it is 
put behind the last TBA module and ETBA module. It 
shows that the attention mechanism in TBANet benefits 
the accuracy improvement. 

 

 
 

Fig.5 Ablation study for location of PSA module. 
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e) Visualizing Ablation Results: In order to 
demonstrate more intuitively the impact of our proposed 
module on the segmentation results, we visualize the 
results of the relevant ablation experiments, as shown in 
Fig.6. It can be seen that when the TBA module is 
removed, the network is unable to accurately segment 
small-sized objects in the distant view, and the 
segmentation results for objects in the pole class are also 
poor. After ablating the ETBA module, the network 
cannot recognize large-sized objects because of the 
restricted receptive field. When the MMA module is not 
used as the up-sampling module, the network cannot 
recover the resolution accurately, resulting in a rougher 
quality of the final predicted image. From the  

above results, it can be proved that our proposed module 
is beneficial for the model to segment the input image 
accurately. 

4.4 Evaluation results on cityscapes 
In this phase, we test the accuracy and inference rate 

of the proposed TBANet on the widely used test set of 
Cityscapes and compare it with other advanced real-time 
semantic segmentation models. For a fair comparison, we 
do not use testing techniques such as multi-crop and 
multi-scale testing during the testing period, and data for 
other networks are obtained from the relevant literature.  

The results in Table 4 show that TBANet achieves 
75.1% mIoU on the Cityscapes test set, already surpassing  

 

 
 

Fig.6 Visualizing ablation results. From left to right: Ground-truth, ablation of TBA, ETBA, MMA and TBANet. 
 

Table 4 Evaluation results between TBANet and other state-of-art networks on the cityscapes test set 

Method Input Size Pretrain GPU mIoU(%) FPS Params(M) 
ENet[17] 512×1024 No Titan 58.3 76.9 0.36 

ESPNet[26] 512×1024 No Titan 60.3 11 2.10 
ICNet[19] 512×1024 ImageNet Titan 69.5 30.3 26.50 
BiseNet[6] 768×1536 ImageNet TitanXp 68.4 105.8 5.80 

DABNet[23] 512×1024 No 1080Ti 70.1 104.0 0.76 
LEDNet[13] 512×1024 No 1080Ti 69.2 71 0.94 
DFANet[8] 1024×1024 ImageNet TitanX 71.3 100 7.80 

MSCFNet[45] 512×1024 No TitanXp 71.9 50 1.15 
BiSeNetv2[7] 512×1024 No 1080Ti 72.6 156 3.4 
CFPNet[36] 1024×2048 No 2080Ti 70.1 30 0.55 
AFPNet[35] 1024×2048 No TitanXp 76.4 31.5 12.2 

FDDWNet[37] 512×1024 No 2080Ti 71.5 60 0.80 
FBSNet[38] 512×1024 No 2080Ti 70.9 90 0.62 

CABiNet[39] 1024×2048 No 2080Ti 75.9 76.5 0.64 
LEANet[39] 512×1024 No 1080Ti 71.9 77.3 0.74 
LAANet[29] 512×1024 No 1080Ti 73.6 95.8 0.67 

BiAttnNet[32] 512×1024 No 2080Ti 74.7 89.2 2.20 
EANet[46] 1024×2048 No 1080Ti 74.6 35.4 12.6 
PCNet[47] 1024×2048 Scratch 2080Ti 72.9 79.1 1.49 

TBANet(ours) 512×1024 No 2080Ti 75.1 90.3 2.07 
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Many real-time semantic segmentation networks. AFPNet[35] 
is slightly more accurate than TBANet, but is almost three 
times slower and has six times more parameters. TBANet 
has almost the same speed as BiAttnNet[32] and is inferior to 
our network regarding parameters and accuracy. In 
conclusion, our network has excellent speed and performs 
well in terms of accuracy. 

To show the superior segmentation capability of 
our model in more detail, Fig.7 shows the images 
segmented on the Cityscapes dataset. In the first set of 
comparison figures, it can be seen that the TBANet is 
more accurate in segmenting fences and poles. Good 
segmentation results of our network for street lights and 
traffic signs are shown in the second and third sets of 
figures. The last set of figures, it is demonstrated that 
the TBANet can segment trucks more accurately. As can 
be seen from the segmentation results, TBANet not only 
has excellent segmentation ability for small objects, but  

also can accurately categorize large objects. 

4.5 Evaluation results on CamVid 
To further demonstrate the generalization ability and 

efficiency of the proposed TBANet, we conduct 
experiments on another frequently used CamVid dataset. 
A comparison with segmentation networks that have 
performed well in recent years is shown in Table 5. 
TBANet has achieved good experimental results on 
CamVid both in terms of accuracy and speed, better 
balancing speed and accuracy. DSANet[42], although 
slightly more accurate than TBANet, is much slower than 
our network. Although the mIoU of  MLFNet[48] is 
higher than that of TBANet on the CamVid dataset, the 
network does not segment as well as TBANet on the 
Cityscapes dataset. It can be seen that our model 
accomplishes the two goals of real-time semantic 
segmentation: fast speed and high accuracy. 

 

 
 

Fig.7 Visual comparison on Cityscapes validation set. From left to right: Input image, ground-truth, prediction of DABNet, 
FDDWNet, and TBANet. 

 
Table 5 Evaluation results on the CamVid test set 

Method GPU mIoU FPS 

ENet [17] TitanX 51.3 98.8 

ESPNet [26] TitanX 58.2 112 

ICNet [19] TitanX 67.1 27.8 

BiseNet [5] TitanXp 65.6 175 

DABNet [23] 1080Ti 66.2 124.4 

DFANet [8] TitanX 64.7 120 

LEANet [40] 1080Ti 67.5 98.6 

FDDWNet [37] 2080Ti 66.9 79 

DSANet [42] 1080Ti 69.9 75.3 

LAANet [29] 1080Ti 67.9 112.5 

MLFNet-Res34 [48] 2080Ti 69.0 57.2 

TBANet(ours) 2080Ti 68.4 112.9 

5 Conclusion 
In this paper, we propose a TBANet applied to 

real-time road scene segmentation and experimentally 
demonstrate that it shows better capabilities in both speed 
and accuracy. In the encoder part, our proposed TBA and 
ETBA can extract image features efficiently under the 
constraints of small computational costs. In the decoder 
part, the MMA is designed based on the characteristics of 
standard upsampling methods that can aggregate 
multi-stage feature information. In conclusion, TBANet is 
a real-time semantic segmentation network with 
outstanding performance in parametric number, accuracy 
and speed. 
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