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Abstract: Defect detection technology is crucial for the efficient operation and maintenance of 
photovoltaic systems. However, the diversity of defect types, scale inconsistencies, and 
background interference significantly complicate the detection task. Therefore, this paper 
employs the YOLOX model as the backbone network structure and optimizes various modules 
to address these issues. First, we adopt a transfer learning strategy to accelerate model 
convergence and avoid insufficient accuracy due to the limited number of defect samples. 
Second, we introduce the SENet module into the feature extraction process to enhance the 
contrast between defects and their background. Then, we incorporate the ASFF strategy at the 
end of the PAFPN network to adaptively learn and emphasize both high- and low-level 
semantic features of defects. Furthermore, model accuracy is enhanced by refining the loss 
functions for positioning, classification, and confidence. Finally, the proposed method achieved 
excellent results on the Photovoltaic Electroluminescence Anomaly Detection dataset 
(PVEL-AD), with a mAP of 96.7% and a detection speed of 71.47FPS. Specifically, the detection 
of small target defects showed significant improvement. 
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1 Introduction 
Photovoltaic power generation has achieved 

significant success as a crucial renewable energy 
technology, with its proportion in the power generation 
sector steadily increasing. The 2023 report from the 
International Energy Agency (IEA) indicates that the spot 
prices for solar photovoltaics have decreased by nearly 50% 
year-over-year, with the production capacity being three 
times that of 2021. Solar photovoltaics account for 
three-quarters of the global new renewable energy 
additions, with an expected global supply reaching 1100 
GW by the end of 2024. By 2028, nearly 60% of the new 
installation capacity is projected to be in China[1]. 

Therefore, photovoltaic power generation technology, 
benefiting from significant reductions in component costs 
and extensive deployment, has become the most favored 
form of renewable energy generation in the future. 

The development of photovoltaic power generation 
and its initial investment returns are primarily dependent 
on the performance and lifespan of photovoltaic cells. 
However, due to their crystalline structure, these cells are 
highly susceptible to human-induced disturbances 
during manufacturing, transportation, and installation 
processes[2]. Moreover, photovoltaic power plants are 
often located in harsh environments such as Gobi and 
semi-arid deserts, which expose them to natural elements 
like storms and hail[3]. These elements can lead to defects 
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such as debris accumulation, grid rupture, and concealed 
cracks. Literature[4] suggests that defects or failures in 
photovoltaic cells can result in a loss of up to 18.9% in 
total output power. Notably, while microcracks initially 
have a minimal impact on power generation, they may 
expand and degrade over time, resulting in power loss 
rates ranging from 0.9% to 42.8%[5]. Additionally, this 
degradation can trigger hotspot effects[6], leading to panel 
damage, increased fire risk, and a significant reduction in 
power generation efficiency[7,8]. Therefore, the quality 
and health status of photovoltaic cells are closely related 
to power generation efficiency and economic benefits[9]. 
To ensure the normal operation of photovoltaiccells, the 
adoption of effective defect detection methods is crucial. 
Currently, defect detection in photovoltaic cells is 
primarily classified into three categories: manual 
inspection, optical image-based detection, and other 
techniques. The advantages and disadvantages of each 
method are summarized in Table 1. 

Manual inspection methods are operationally complex 
and offer low localization accuracy, making them 
unsuitable for large-scale applications. Electroluminescence 
(EL) imaging, favored for its non-destructive nature and 
low cost, is easily integrated into production lines.Recently, 
computer vision has been widely used in the detection of 
surface defects in photovoltaic cells. The effective 
integration of EL imaging and computer vision not only 
emphasizes the characteristics of the defect area but also 
extracts more comprehensive feature information, thereby 
effectively overcoming the limitations of traditional 
methods and enhancing the quality and efficiency of 
photovoltaic defect detection. 

Computer vision methods are primarily categorized 
into three groups: artificial design rules, traditional 
machine learning, and deep learning techniques. The first 
two methods, though providing preliminary results in 

defect detection, have limitations due to their manually 
designed feature extraction processes. These processes do 
not adequately capture the effective features of defects, 
particularly under conditions of multiple defect 
uncertainties, leading to suboptimal outcomes. Deep 
learning, with its superior learning capabilities, has 
achieved significant success in classifying, detecting, and 
segmenting photovoltaic cell surface defects. Literature [18] 
proposed a lightweight defect detector based on the 
EfficientNet-B0 backbone, utilizing a graph channel 
attention module to enhance global information modelling 
in CNNs. Literature[19] introduced the YOLO-PV algorithm, 
a YOLO-based object detection method that reduces 
reliance on deep information extraction and focuses on 
refining low-level defect details. Literature[20] developed a 
semantic segmentation model for the analysis of 
electroluminescence images of photovoltaic components. 

Compared to existing methods for detecting defects 
in photovoltaic cells from EL images, this paper attempts 
to achieve precise detection and localization by 
incorporating attention mechanisms, merging high and 
low-level semantic features, and improving the loss 
function. Our contributions are as follows: 

•The SENet attention reduces background noise in 
the backbone network, while bicubic interpolation in 
PAFPN preserves key features. 

•The ASFF strategy adjusts feature weights across 
scales, improving multi-scale processing and enhancing 
performance. 

•The EIoU replaces IoU to improve bounding box 
aspect ratio computation, and VariFocal loss addresses 
sample imbalance, boosting accuracy. 

The proposed model was evaluated on the 
PVEL-AD dataset through quantitative and qualitative 
analyses, ablation studies, small object detection 
performance, and loss variation. 

 

Table 1 Photovoltaic cell defect detection method comparison table 

Category Methods Strengths Weaknesses 

Visual 
detection 

Manual Visual 
Inspection[10] Fast and easy to operate. 

The efficiency is low, the experience and subjective 
awareness of the inspectors will affect the results, and 
the internal defects of the battery are difficult to detect 

with the naked eye. 

Optical 
detections 

Infrared heat 
detection[11] 

Non-destructive testing, quantitative 
measurement, high resolution. 

Equipment is expensive, and large-scale detection 
leads to low efficiency. 

Electroluminescent 
detection[12] 

Non-destructive testing, low cost, good 
repeatability, defects are easy to detect. 

The image appears stray light interference and random 
noise. 

Photoluminescence 
detection[13] 

Non-contact, non-destructive testing, fast 
detection speed, high resolution. 

The specifications of the pulse light source are strict, 
the cost is high, and the laser cannot be irradiated 

uniformly. 
UV fluorescence 

imaging[14] 
Non-destructive testing, snail tracks and 

cracks are easy to detect. 
Long time exposure and sufficient light source 

irradiation, some defect types cannot be detected. 

Other 
detections 

Acoustic testing[15] High detection accuracy for specific defect 
types. Only detecting a single defect has great limitations. 

Electronic 
interferometry[16] 

Good detection of external defects such as 
scratches and chips. 

The detection effect on internal defects such as hidden 
cracks and broken grids is poor. 

Electrical 
characteristic 
detection[17] 

High real-time performance, can be used 
for quantitative calculation. 

High cost and inability to accurately detect the size 
and location of defects. 
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The organization of this paper is as follows: Section 
2 provides a review of the literature on surface defects in 
photovoltaic cells. Section 3 describes the dataset, 
framework, and enhancements made to the algorithm of 
the model. Section 4 discusses the experimental design, 
results, and evaluation of performance. Section 5 
concludes the paper and suggests directions for future 
research. 

2 Related works 
In deep learning, neural networks enhance the 

accuracy of detection by extracting refined textural 
features of defects along with more abstract semantic 
features. In the past, researchers have proposed many 
excellent detection methods based on deep learning for 
detecting surface defects in photovoltaic cells, which can 
primarily be categorized into two types: two-stage and 
single-stage object detection. 

In the field of two-stage object detection networks, 
literature[21] proposes a novel Complementary Attention 
Network (CAN) that is embedded within the Region 
Proposal Network of Faster R-CNN to extract more 
refined information on defect areas. Literature[22] employs 
the ResNet-101-FPN backbone to train Mask R-CNN, 
meeting the requirements for automatic detection of 
multiple types of defects and their application in actual 
production lines. Furthermore, literature[23] introduces a 
CNN-based decoupled two-stage object detection 
framework that enhances detection performance through 
Multi-Head Aggregation (MHA) blocks and Local 
Non-Local (LNL) blocks. However, the processing speed 
of two-stage detection networks is slow, which may not 
meet the demands of actual production environments. 

In comparison, single-stage object detection 
networks, such as the YOLO series, have the advantages 
of speed and real-time performance. By detecting objects 
of various sizes on feature maps of different dimensions, 
they address the issue of diverse defect scales in EL 
images, effectively enhancing both detection speed and 
accuracy. Literature[24] fine-tunes the model through 
transfer learning, demonstrating that the YOLO 
single-stage detection method is superior to the two-stage 
methods. Literature[25] incorporates a Global Attention 
Mechanism (GAM) into the backbone network of 
YOLOv5, enhancing the image feature extraction 
capability. Literature[26] proposes a defect detection 
method under background interference, adapting channel 
characteristics for reweighting and adjusting monitoring 
signals at different scales. Literature[27] improves feature 
extraction capability and suppresses background noise by 
introducing DCNv2 and attention mechanisms, achieving 
a detection accuracy of 89.64%. Literature[28] introduces a 
Cross-Space Multi-Scale Attention (EMA) mechanism 
after the C2Dense module, focusing on pixel-level 
features to enhance useful information for defect 
detection. Literature[29] designs a multi-scale attention 
mechanism that refines multi-scale features through 

attention, thereby enhancing classification and detection 
performance. These methods primarily integrate various 
attention mechanisms into the backbone to suppress 
background information and improve model detection 
accuracy. Some researchers focus on improving feature 
fusion in the model fusion layer. Literature[30] designs a 
novel YOLO model to capture local connections between 
images and feature maps, extracting more detailed edge 
features of similar faults and enhancing small object 
detection accuracy. Literature[31] introduces a backbone 
neck structure called BPFPN to enhance multi-scale 
feature fusion capability, improving the detection of small 
defects with an accuracy of 88.8%. Literature[32] adds 
adaptive feature space fusion to the existing feature fusion 
structure in YOLOv5. Literature[33] designs a self-fusion 
network (SeFNet) that replaces the classification layer in 
HRNet, better integrating multi-resolution feature 
information in image models. In object detection 
networks, the loss functions used for defect localization 
and classification also merit attention. Literature[34] 
replaces the original cross-entropy loss function with 
focal zoom loss to enhance network feature extraction 
without increasing computational load. Literature[35] uses 
a focal loss function to train a lightweight defect detector 
based on EfficientNet-B0, addressing multi-defect 
category imbalance. Literature[36] considers DIoU loss 
function for bounding box overlap areas and the distance 
between centers, minimizing the normalized distance 
between prediction and target boxes. Literature[37] 
replaces the default NMS with Distance Intersection over 
Union (DIoU), considering overlap areas and center 
distances between two boxes, thereby generating more 
accurate bounding boxes. Literature[38] introduces the 
Wise-IOU loss function, further improving model 
detection accuracy and achieving excellent results. 

The aforementioned enhanced model can suppress 
complex background information in photovoltaic cell 
electroluminescence (EL) images and improve the fusion 
capability of multi-scale features. However, while 
ensuring that the model's detection speed and deployment 
performance meet practical requirements, enhancing the 
accuracy of defect detection still faces several challenges: 
(1) Crystal structures resembling defects may mislead the 
model's judgement. (2) The types and shapes of defects 
vary, and overlapping occurrences of multiple different 
defects exist. (3) Small-sized defects have weaker feature 
expression capabilities, making localization and 
identification more difficult. 

3 Dataset and methods 
3.1 Introduction of dataset 

The PVEL-AD dataset is collected from actual 
industrial manufacturing, with a higher original resolution 
of 1024×1024, and defect types are more diverse and 
comprehensive, such as cracks, broken grids, black cores, 
misalignment, thick lines and other types of defects[39], 
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experts annotated the location and category of defects. 
From the perspective of the dataset, several challenges 
still remain in training an effective defect detection 
model: 

(1) Defect categories are imbalanced, with 3403 
instances of "finger" and 157 instances of "star_crack". 
This significant difference in numbers may result in 
overfitting problems. The distribution of the number of 
different defects is illustrated in Fig.1 below.  

 

 
 

Fig.1 Distribution map of the number of defects in the data set. 

 
(2) The image background is complex and 

non-uniform, featuring structures like grid lines and 
grains. Notably, the grain structures vary in size, are 
randomly distributed, and closely resemble defects, 
increasing the likelihood of false detections. Existing 
methods struggle to suppress the interference from 
complex backgrounds in defect detection. 

(3) Defects on photovoltaic cells vary widely in type 
and shape, often appearing in multiples with uncertain 
sizes, shapes, and distributions on the same cell. The 
"crack" category, in particular, exhibits high randomness 
in its appearance. 

(4) Locating and identifying small target defects is 
extremely challenging due to their small scale and limited 
visual information. These defects often have weak feature 
expression and can be overshadowed by larger targets, 
leading to their neglect during the learning process. 

Fig.2 visually illustrates the characteristic shapes of 
defects: the brightly illuminated areas are defect-free, 
while the darker areas or lines indicate the presence of 
defects, gate lines, and grains. It is important to note that 
grains, although visible, are not defects. In Fig.2, grid 
lines are marked with green boxes, grains with red boxes, 
grain false defects (which closely resemble cracks) with 
blue boxes, and linear cracks with yellow boxes. 

3.2 Methodology 
We propose an enhanced photovoltaic cell defect 

detection network based on the modified YOLOX, as 

shown in Fig.3: The network utilizes the CSPDarknet 
architecture to extract feature maps from EL images, 
while the defect features are reinforced and irrelevant 
information is suppressed through the SENet attention 
mechanism. Subsequently, the upsampling performance 
in the PAFPN network is improved using bicubic 
interpolation, and the ASFF module is employed for 
adaptive learning of multi-scale features to augment 
fusion. Ultimately, the EIoU loss function is employed to 
optimize the IoU, and the VariFocal loss is replaced with 
binary cross-entropy to enhance model precision and 
convergence speed. 

 

 
 

Fig.2 EL image with non-uniform texture background. 

 
(1) YOLOX 
YOLOX is a single-stage target algorithm, because 

of its flexibility, high efficiency and generalization ability, 
and it is widely used in the field of object detection. The 
YOLOX network structure is divided into three 
components: Backbone, Neck and Head. 

The backbone network is based on CSPDarknet 
and employs multiple modules such as Focus, CBS, 
CSP, and SPP to extract features, enhancing the model's 
ability to recognize targets of various sizes. The neck 
network integrates the FPN and PAN structures to 
facilitate efficient information transfer and fusion 
across different levels. The head network improves 
detection accuracy and convergence speed by 
optimizing the classification and regression tasks 
through a decoupled head structure. 

(2) Transfer Learning 
To mitigate model underfitting resulting from 

insufficientdefect samples, this study introduces a 
model-based transfer learning approach[40]. Pre-trained 
model parameters are transferred to the training of the 
new dataset, addressing issues related to random 
parameters initialization. Moreover, to expedite model 
adjustment efficiency, a freezing training strategy is 
adopted during the training process. The backbone 
network is frozen, keeping the feature extraction network 
unchanged and conserving video memory. 
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Fig.3 Defect detection network of photovoltaic cells based on improved YOLOX model. 
 

(3) SENet Attention 
Structural defects such as grid lines and particulates 

in photovoltaic cells increase the complexity of detection. 
Consequently, we introduced the SENet 
(Squeeze-and-Excitation Network)[41] attention 
mechanism to enhance the contrast between the defect 
core and its background, thereby reducing background 
noise. The architecture is depicted in Fig.4. 

 

 
 

Fig.4 SENet network structure diagram. 
 

Firstly, the Squeeze operation compresses the feature 
channel into a series of real numbers with a global 
receptive field, the original feature map is compressed 
from H×W×C to 1×1×C. The specific details of the 
Squeeze operation can be formulated as  
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Among them, s
cv  represents the c-th convolution 

kernel; Xs represents the sth input; H and W represent the 
height and width of the feature map, c represents the 
number of channels. 

Secondly, Excitation uses two fully connected layers 
to perform a non-linear transformation on the results after 
Squeeze to build the interconnection between channels. 
The details can be formulated as 
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Among them, Sc represents the weight coefficient; uc 

represents a two-dimensional matrix; r represents the 
scaling coefficient. 

Finally, weights are calculated using the sigmoid 
activation function and features are weighted through 
channel-wise multiplication, effectively extracting defect 
characteristics on the surface of photovoltaic cells and 
suppressing background interference. 

(4) Bicubic Interpolation Upsampling 
In the PAFPN architecture, nearest neighbor 

interpolation is employed for upsampling, which, 
although fast, tends to result in the loss of pixel values. To 
minimize the loss of critical features during the sampling 
process, a bicubic interpolation algorithm is utilized. This 
algorithm performs cubic interpolation calculations on the 
grayscale values of the 16 surrounding points of the 
sample points, carefully considering the rate of change in 
grayscale values between adjacent points. This approach 
optimizes image details, reduces distortion, and enhances 
the precision and effectiveness of the upsampling. 

(5) Adaptive Spatial Feature Fusion 
In the process of defect feature extraction, the 

position information of small target defects is easy to 
disappear. Therefore, in our study, we introduce the 
adaptive space feature fusion[42] (ASFF) strategy, adding 
at the end of PAFPN. The ASFF structure adaptively 
learns the weight of each position on each feature layer, 
suppresses the inconsistency of different scales in the 
feature extraction network, and highlights the important 
position of small target defect features in feature layer 
fusion. The ASFF algorithm structure is shown in Fig.5.  

 

 
 

Fig.5 ASFF fusion network structure diagram. 
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In the feature scaling part, the three enhanced feature 
layers L1, L2, and L3 obtained by the PAFPN extraction 
network are arranged in order from small to large. The 
larger the scale, the smaller the number of channels. In 
Fig.6, ASFF-3 is taken as an example. 

In the adaptive fusion part, the weight parameter α、
β、γ is obtained through a 1×1 convolution operation, used 
for the fusion of features at different scales. This weight 
parameter is multiplied by the feature maps L1, L2, and 
L3 and then summed to form the fused feature ASFF−3. 
The description of the above process can be formulated as 

 1 2 3* * *l l l l l l l
ij ij ij ij ij ij ijy a x x xβ γ→ → →= + +  (5) 

Among them, l
ijy  represents the new feature map 

obtained through ASFF feature fusion. 1 l
ijx → , 2 l

ijx →  and 
3 l
ijx →  are the map vector of the first, second and third 

feature layer to the l  feature layer, respectively. l
ijα , l

ijβ  

and l
ijγ  are the feature mapping weight of three different 

feature layers at position ( , )i j  to the l feature layer, and 
the calculation process of the weight l

ijα  can be 
formulated as 
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Which is the control parameter obtained by using a 
1×1 two-dimensional convolutional layer to process input 
features of three different scales. 

Compared to the original structure, the ASFF 
structure enables more effective fusion of features across 
different scales through backpropagation, resulting in 
improved model performance with minimal additional 
overhead. 

(6) Loss Function Improvement 
In the YOLOX, the loss function is mainly 

composed of three modules: bounding box positioning 
loss, classification loss and confidence loss.  

1) Bounding box localization loss improvement 
The YOLOX uses the intersection over union (IoU) [43] 

to calculate the bounding box positioning loss. However, the 
IoU function primarily exhibits two drawbacks: 1) It only 
considers the overlapping area between the predicted 
bounding box A and the actual bounding box B; 2) When 
there is no overlap between A and B, the loss is 0. In our 
research, IoU is replaced by an efficient intersection over 
union loss (EIOU) function[44] to solve these problems. 
The expression of the EIoU loss function can be 
formulated as 

2 2 2

2 2 2

( , ) ( , ) ( , )         1

EIoU IoU Dis Asp

gt gt gt

w h

L L L L

o o w w h hIoU
c c c

ρ ρ ρ

= + +

= − + + +
 (7) 

In the equation, ρ2(o, ogt) represents the distance 
between the centers of two frames, o denotes the center of 
the predicted frame, ogt is the center of the true frame, (wgt, 
hgt) and (w, h) correspond to the dimensions of the true 

frame and the predicted frame respectively, c is the 
minimum corner distance encompassing both boundaries, 
and (cw, ch) refers to the dimensions of this minimum 
bounding box. 

Traditional IoU loss functions fall short in regression 
precision when dealing with various randomly distributed 
defects on the surfaces of photovoltaic cells. The EIoU 
loss function, however, enhances the model's convergence 
speed and regression accuracy, making it more suitable 
for practical applications. 

2) Classification Loss and Confidence Loss 
Improvement 

The YOLOX network uses the binary cross-entropy 
loss function[45] to calculate the classification loss and 
confidence loss. Due to the imbalance in sample 
categories and the high similarity between defect targets 
and the photovoltaic cell background, the loss function 
struggles to differentiate defect targets from the 
background and is ineffective in handling target overlap 
and occlusion. 

The VFL (Varifocal loss, VFL)[46] loss function can 
effectively alleviate the problems of uneven distribution 
of positive and negative samples and few defective 
samples by asymmetrically treating the loss caused by 
positive and negative samples. The function can be 
formulated as 

( log( ) (1 )log(1 )), 0
( , )

log(1 ), 0
q q p q p q

VFL p q
p p qγα

− + − − >
= − − =

  (8) 

In the formula (8), p is the predicted output value of 
the YOLOX network, and q is the real value. By reducing 
the loss of negative samples with q=0 through the γ factor 
in the VFL, while keeping the loss of positive samples 
unchanged, the loss information is balanced to enhance 
model accuracy. 

4 Results 

4.1 Experimental settings 
The dataset is randomly divided into training, 

validation, and test sets according to a ratio of 7:1.5:1.5. 
Therefore, in all experiments, the number of instances in 
the training set is 3150, the validation set is 675, and the 
test set is 675. 

The proposed model is written in Python under the 
framework of PyTorch, and the experiment is run on 
Intel(R) Xeon(R) Gold 5317 CPU @ 3.00GHz processor, 
504GB memory, and A100 80GB GPU platform. Some 
specific details of the experimental procedure are 
described below. During the experiment, mixed-precision 
training was used to reduce video memory by nearly half. 
We set a probability of 25% to use the mosaic and mix up 
data enhancement method[47] to enrich the detection 
background information and increase the number of 
overlapping defects. 

4.2 Performance metrics 
The performance of the network model is mainly 
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judged by three aspects: detection accuracy, detection 
speed, and deployment difficulty. 

In our study, mAP is the most commonly used 
evaluation standard for target detection tasks. It represents 
the average value of n defect categories AP, and AP is the 
integral of precision to recall on the Precision-Recall 
curve. They can be formulated as 

 1

n
ii

AP
mAP

n
==   (9) 

 
1

0

( )P RA dRP =   (10) 

TP (true positive) refers to predicting positive 
samples as positive, FN (false negative) predicts positive 
samples as negative, and FP (false positive) predicts 
negative samples as Positive class. Therefore, Recall and 
Precision can be formulated as 

 TP
TP FN

Recall =
+

 (11) 

 TP
TP FP

Precision =
+

 (12) 

The mAP@0.5:0.95 shown in the experimental 
evaluation section is the average mAP on different IoU 
thresholds (from 0.5 to 0.95, step size 0.05). Among them, 
S , M and L represent the average accuracy for small, 
medium and large targets, where the small target: the area 
of the defective target is less than 32×32 pixels (1024 
pixels), the medium target: the area of the defective target 
is between 32×32 and 96×96 pixels (1024 to 9216 pixels), 
and large target: the area of the defective target is greater 
than 96×96 pixels (more than 9216 pixels). In this way, 
we can evaluate the detection performance of the model 
from multiple perspectives for defects of different scales. 

In our study, the frame rate (frame per second, FPS) 
indicator is used to evaluate the detection speed of the 
model. FPS is the number of detected images per second. 
Furthermore, we use model parameters (Parameters) and  

floating point operations per second (FLOPs) to evaluate 
the complexity of the network model. 

4.3 Evaluation 
This chapter will introduce the experimental results 

of our proposed model on the PVEL-AD dataset, from 
five different perspectives: quantitative experiments, 
qualitative experiments, ablation experiments, the 
detection performance of the model in small target defect 
types, and the loss trend graph of the model. First of all, in 
the quantitative experiment, our model was compared 
with the commonly used methods and other improved 
methods in recent years. Secondly, in the qualitative 
experiment, the detection result map of our model is 
compared with the real map. Thirdly, in the ablation 
experiment, the effectiveness of each improved module is 
jointly verified by combining the experimental result data 
and the heat map. Then, to highlight the power of the 
improved model, it is compared with other methods on the 
three defect types that are more difficult to identify. 
Finally, in order to highlight the stability, convergence 
and efficiency of the improved model, the loss trend graph 
of the model is analyzed. 

(1) Quantitative Analysis 
We selected the more commonly used models from 

the single-stage and two-stage for comparison. Among 
them, the single-stage target detection algorithm are: 
YOLOV4, YOLOV5, YOLOX, Fcos, RetinaNet. 
Two-stage target algorithms are: SPP-Net, Fast RCNN, 
Faster-RCNN. The test results of different models are 
shown in Table 2.  

From the above experimental results, it can be 
clearly seen that the overall performance of the YOLOX 
model is superior to other basic models. In terms of 
detection accuracy of YOLOX, the mAP and 
mAP@0.5:0.95 indicators are 93.8% and 61.2%, 
respectively. The amount of parameters and calculations 
of YOLOX are 8.940M and 26.772G respectively, farlower. 

 
Table 2 Results of performance comparisons with commonly used models 

Model Train 

Detection accuracy/% Speed Difficulty 

mAP mAP@ 
0.5:0.95 

mAP@ 
0.5:0.95_S

mAP@ 
0.5:0.95_M

mAP@ 
0.5:0.95_L FPS Total params GFLOPS 

YOLOV4 S 84.0 46.9 11.3 28.7 45.8 55.3386FPS 63.975M 142.021G 

YOLOV5 S 90.4 55.1 23.3 41.2 54.9 91.5746FPS 46.669M 114.679G 

Fcos S 80.2 48.4 22.8 49.3 48.0 58.9931FPS 32.127M 161.410G 

RetinaNet S 60.6 39.8 13.1 38.3 42.2 53.1913FPS 36.475M 165.967G 

SPP-Net T 82.3 54.0 23.3 45.3 56.0 58.5612FPS 45.285M 82.747G 

Fast RCNN T 87.7 57.6 24.8 48.3 59.7 42.7465FPS 57.53M 192.514G 

Faster-RCNN T 93.0 61.6 25.7 50.6 63.1 28.7104FPS 136.832M 401.862G 

YOLOX S 93.8 61.2 30.6 45.0 61.8 77.3538FPS 8.940M 26.772G 

YOLOX (No-TL) S 91.4 56.2 24.3 41.7 56.2 76.5121FPS 8.940M 26.772G 

Our model S 96.7 66.1 39.2 56.2 68.4 71.4741FPS 14.424M 35.223G 
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than others. The overall performance of the YOLOX 
model is undoubtedly the best. It is worth noting that 
"No-TL" indicates that the YOLOX model did not apply 
transfer learning. Although the pre-trained weights 
originated from the COCO dataset, which has a vastly 
different sample distribution from photovoltaic cell 
defects, the performance with transfer learning was still 
2.4% higher than without it, demonstrating that transfer 
learning significantly enhances model performance. 
Therefore, our research makes improvements based on 
YOLOX with transfer learning. Compared with YOLOX, 
our model has increased by 2.9% in mAP and achieved a 
4.9% increase in mAP@0.5:0.95. The detection accuracy 
has been significantly improved, especially for the 
recognition task of small targets, which can be proved by 
the mAP@0.5:0.95_S indicator. It is worth noting that the 
detection speed of our model is 71.4741FPS, which is 
only a small increase compared to YOLOX. Due to the 
addition of the attention mechanism and the adaptive 
feature fusion network, the parameters and calculations of 
our model have increased to 14.424M and 35.223G 
respectively, but these indicators are still far smaller than 
other models. So, in terms of deployment difficulty, our 
model is still highly competitive. The experimental results 
prove that our schemes such as introducing adaptive 
spatial feature fusion structure, adding SENet attention 
mechanism, and improving loss function are correct, can 
effectively alleviate the problems of lack of defect 
samples and complex background. 

(2) Qualitative Analysis 
In order to more intuitively show that our improved 

method is effective compared with other models, we start 
from the perspective of qualitative analysis. We selected 
three representative EL images from the test set. Fig.6 
shows the real label and the actual detection results of 
several better models on the surface defects of 
photovoltaic cells. It needs to be explained that the four 
columns represent the real labels of defects, the prediction 
results of Faster-RCNN, YOLOX, and our models. 

The first row in Fig.6 shows that all three models 
correctly detected all defects, but our improved model 
effectively enhanced the confidence of all defects, proving 
that our improvement of the confidence loss function is 
scientific and correct. In the second row, the two prediction 
boxes of "finger" and "crack" coincide, so Faster-RCNN 
and YOLOX have a bad situation of missing the "finger" 
defect. However, our model improves the bounding box 
localization loss function and reasonably solves the overlap 
problem of two boxes, so it can effectively identify the 
"finger" defect in the "crack" detection box. In the third row, 
because of the complex background and the interference of 
non-defect impurities, the Faster-RCNN and YOLOX 
models reappeared in the case of missed detection, and all 
small target "finger" defects cannot be identified. 
Nevertheless, our model is effective because of its SENet 
attention mechanism and ASFF feature fusion layer which 
can highlight the features of defect areas. In conclusion, the 
improved method suppresses the interfering impurities and 
detects almost all defects effectively.

 

 

 
 

Fig.6 The actual forecast graph of each model. 
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(3) Ablation Studies 
In order to confirm the effectiveness of each 

component in our improved model, we use ablation 
experiments for analysis. The experimental results are 
shown in Table 3. On the basis of the original YOLOX, 
the improvement scheme is gradually added. From the 
experimental results, we can see that all the indicators of 
detection accuracy are generally improved. Especially, 
the detection performance of small and medium targets is 
the most prominent: mAP@0.5:0.95_S increased by 8.6%, 
mAP@0.5:0.95_M increased 11.2%. Although the 
amount of parameters and calculations under the 
improvement are slightly insufficient compared with 
those before the improvement, the detection performance 
of the model for various defects is greatly enhanced. It 
fully demonstrates that this improvement method is 
scientific and rea-sonable. 

At the same time, Fig.7 shows the prediction results 
and corresponding heat map of each degree of the 
improved model. It is clearly seen that the YOLOX basic 
model can only recognize one defect point in the image. 
Although there are thermal distributions in other areas in 
the image, the thermal value is too low to reach the 
threshold set by the experiment, so a large number of 
defect areas are lost. During the sampling stage on 
PAFPN, the bicubic interpolation algorithm is used  

tominimize the loss of key feature points. The model's 
focus on the area of defects widens, which can be 
confirmed by the diffusion of regions in the heatmap. 
After improving the classification and localization loss 
functions in the network, the model enhances its 
confidence in its detection results,while emphasizing the 
importance of defect detection results, while 
emphasizing the importance of defect locations more 
prominently. However, more focused areas do not mean 
better ability. In order to reduce the influence of the 
interference background, highlight defect feature areas, 
and avoid blind recognition of the model, our model adds 
an attention mechanism and a feature fusion network. The 
improving effects can be seen in columns 5 and 6. 

(4) Model Performance on Small Target Defect 
Types 

In order to highlight the recognition performance of 
our model for small target defects, we choose 
Faster-RCNN, YOLOV5, and the basic YOLOX to 
compare with our improved model. The performance of 
each model is compared on the four most representative 
types. The four types of defects are: "crack", "thick_line", 
"finger" and "star_crack". The evaluation indicators 
include AP, Precision, Recall and F1-score. It should be 
noted that the score_threhold of Precision, Recall and 
F1-score are all set to 0.5. 

 
Table 3 Ablation experiment results 

Model 
Detection accuracy /% Speed Difficulty 

mAP mAP@ 
0.5:0.95 

mAP@ 
0.5:0.95_S 

mAP@ 
0.5:0.95_M

mAP@ 
0.5:0.95_L FPS Total 

params GFLOPS

YOLOX 93.8 61.2 30.6 45.0 61.8 77.3538FPS 8.940M 26.772G 

YOLOX+BIU 94.0 62.1 32.4 46.5 61.2 77.5652FPS 8.940M 27.406G 

YOLOX+BIU +VFL 94.3 62.4 32.7 47.8 60.9 79.1329FPS 8.940M 27.406G 

YOLOX+BIU +VFL+EIoU 95.1 63.1 33.3 52.9 62.8 79.9891FPS 8.940M 27.406G 

YOLOX+BIU 
+VFL+EIoU+SENet 95.8 63.9 37.7 56.6 64.0 75.5763FPS 8.984M 27.409G 

YOLOX+BIU 
+VFL+EIoU+SENet+ASFF 96.7 66.1 39.2 56.2 68.4 71.4741FPS 14.424M 35.223G 

 

 
 

Fig.7 The heat map and actual prediction map of each model in the ablation experiment. 
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It can be seen from the AP value diagram in Fig.8 
that the our model has improved the detection 
performance of four representative defects, especially the 
"crack" defect, which has greatly increased on the basis of 
YOLOX. Observing the whole figure, the overall 
performance of our model is enhanced. Although the 
detection results of the "star_crack" type do not rise but 
fall, other types of defects are optimistic. The detection 
results show that our solution to the small target detection 
problem is very effective.  

(5) The Loss Trend Graph of Our Model 
In order to verify the effectiveness of the loss 

function module improvement and the performance of the 
model during training, Fig.9 shows the loss function 
change diagrams of the YOLOX model and our model, 
respectively. In the first 50 epoch freezing phase, by 
comparing the loss change graphs of the two models, it is 
obvious that the loss of the original YOLOX model on the 
training set drops to about 5.5, and the loss on the test 
setdrops to about 4.8, while our model dropped to about  

 

 
 

Fig.8 Different indicators on small target defect recognition performance chart of each model:  
(a)AP; (b)Precision; (c)Recall; (d)F1-score. 

 

 
 

Fig.9 Comparison of training convergence graphs before and after YOLOX improvement on train and validation set:  
(a) The loss of train set; (b) The loss of validation set. 
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3.4 and 2.9 respectively, and the accuracy improved 
significantly. 

Comparing the two figures, it can be found that our 
model converges faster during training, tends to be flat at 
158 epoch, the final training loss is 1.393, and the 
verification loss is 1.783. In contrast, the original 
YOLOX only flattens out at 183 epochs, the final training 
loss is 2.214, and the verification loss is 2.789. Therefore, 
it is fully proved that the stability and convergence of the 
improved model are significantly improved.  

5 Conclusions 
This paper introduces a framework based on an 

enhanced YOLOX model that identifies and localizes 
defects effectively, even with limited sample sizes. The 
framework focuses on highlighting defective area features 
while minimizing complex background distractions. 
Experimental results demonstrate that the proposed 
improved YOLOX outperforms other detection methods 
based on deep learning in terms of detection accuracy, 
speed, and ease of model deployment. It exhibits certain 
advantages in defect detection tasks. 

In future work, further research should focus on 
incorporating more defect types and EL image data to 
enhance the model's generalization capabilities and more 
effectively assess the operational health of photovoltaic 
power plants. Additionally, advances in EL sensors and 
high-performance computing hardware enable the 
development of portable field detection applications. 
These advancements offer potential improvements in the 
efficiency and accuracy of defect detection in real-world 
settings.  
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