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Abstract: For addressing impulse noise in images, this paper proposes a denoising algorithm for 
non-convex impulse noise images based on the l0 norm fidelity term. Since the total variation of 
the l0 norm has a better denoising effect on the pulse noise, it is chosen as the model fidelity term, 
and the overlapping group sparse term combined with non-convex higher term is used as the 
regularization term of the model to protect the image edge texture and suppress the staircase 
effect. At the same time, the alternating direction method of multipliers, the majorization– 
minimization method and the mathematical program with equilibrium constraints were used to 
solve the model. Experimental results show that the proposed model can effectively suppress the 
staircase effect in smooth regions, protect the image edge details, and perform better in terms of 
the peak signal-to-noise ratio and the structural similarity index measure. 
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1 Introduction 
Today, with the rapid development of computer and 

internet technologies, digital image processing has 
permeated into our daily lives and work, such as online 
education, e-commerce, medical diagnostics, video 
surveillance and so on. Images serve as a crucial medium 
for information retrieval, characterized by strong visual 
appeal and high security. However, during the process of 
image acquisition and transmission, various factors like 
environmental conditions and system constraints often 
lead to image degradation, this process is called image 
degradation[1]. Directly operating on degraded images not 
only results in the loss of essential image information but 
also poses risks for subsequent image processing and 
applications[2]. Therefore, an increasing number of 
researchers are focusing on enhancing image quality and 
removing various interference signals, making image 
denoising a popular and critical technology[3-4]. 

At the end of the last century, Tikhonov[5] introduced 
a prior image restoration model based on Tikhonov 

regularization using the l2 norm of the image gradient, 
which improved computational efficiency but suffered 
from over-smoothing of image details. Addressing this 
limitation, Rudin, Osher, and others[6] proposed a new 
image denoising method by measuring image smoothness 
using the l1 norm of the gradient, thus pioneering the Total 
Variation (TV) regularization model. In 2009, Bredies and 
others[7] introduced the Total Generalized Variation (TGV) 
model, which, compared to the TV model, possessed 
properties like rotation invariance and convexity, 
effectively preserving edges and removing staircase 
effects. In 2013, the Overlapping Group Sparsity Total 
Variation (OGSTV) model was first applied to 
one-dimensional signal Gaussian denoising[8]. In 2015, 
Liu, Selesnick, and others[9] utilized the sparse 
characteristics of images, applying OGSTV to image 
restoration and solving it using the Alternating Direction 
Method of Multipliers (ADMM) algorithm. In 2019, 
Adam and colleagues[10] combined high-order 
non-convex total variation with overlapping group 
sparsity regularization, where the non-convex high-order 
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regularization effectively smoothed local image textures 
while preserving sharp edges. Literature[11] proposed 
using the TV model with a fidelity term based on the l0 
norm to remove impulse noise, solving the model using 
proximal ADMM, with experimental results showing that 
the l0-norm-based fidelity TV model outperformed the 
l1-norm-based fidelity TV model. Yin and others[12] used 
the l0-norm-based TV operator as a fidelity term to 
remove impulse noise, employed overlapping group 
sparsity regularization to eliminate staircase effects, and 
used an improved ADMM algorithm for solving, 
achieving good results. This paper proposes a non-convex 
pulse noise image denoising algorithm based on the l0 
norm fidelity term, continuing to use non-convex 
high-order terms as the regularization term of the model 
to alleviate staircase effects. The improved ADMM 
algorithm is used for model solving, and it is proven that 
the model's solution sequence is bounded and converges. 
Finally, comparing the new model with other mainstream 
models using peak signal-to-noise ratio and structural 
similarity index measure, it performs well in subjective 
visual and objective evaluations, validating the 
universality and effectiveness of the model in this paper. 

2 Related Work 

The traditional Total Variation (TV) model can 
effectively remove noise from images. Depending on the 
type of noise, different norms are selected as fidelity 
terms in the model to maximize the denoising effect. The 
TV model, commonly used for removing Gaussian noise, 
selects the l2 norm. However, when this model is used to 
remove other types of noise, it cannot effectively suppress 
the outliers caused by the noise. The total variation image 
denoising model based on the l1 norm can better remove 
impulse noise, but it suffers from insufficient penalization, 
making the model less robust to outliers in the impulse 
noise. In reference[11], Yuan and others proposed a 
non-convex image denoising model based on the l0  norm 
and introduced an effective proximal alternating direction 
method (ADM) algorithm. This algorithm equivalently 
transforms the minimization problem of the l0 norm into a 
Mathematical Program with Equilibrium Constraints 
(MPEC) problem. Experimental results show that this 
algorithm is more effective than previous penalty 
decomposition algorithms used for solving the l0 norm. 
The image denoising model based on the l0 norm is 
represented as follows in formula (1): 

 
0 1( )

u
min o Hu b Duλ− +              (1) 

In formula (1), λ>0 is a regularization parameter 
used to balance the fidelity term and the regularization 
term, ⊙ denotes the standard inner product of matrices. 
o∈{0, 1}n, where oi=0 indicates that the pixel value at 
position i is an outlier, and oi=1 indicates that the pixel 
value at position i is a potential outlier. In the subsequent 

research of this paper, when bi=umin or bi=umax, it implies 
that oi=0; otherwise, oi=1. 

In reference[12], by reformulating the original dual 
problem as an MPEC problem, the optimization problem 
of the l0 norm is addressed. To simplify the subsequent 
solving process, the following lemma is introduced to 
satisfy the l0 norm in formula (1). 

Lemma 1: For any given nx ∈R , formula (2) holds: 
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The only solution to formula (2) is: 

 1 (| |)sign xν ∗ = −              (3) 
The result of solving Lemma 1 shows that problem 

(1) can be equivalent to problem (4): 
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If u* is the global optimal solution to problem (1), 
then (u*, 1–sign(Hu*–b)) is the optimal solution to 
problem (4); conversely, if (u*, 1–sign(Hu*–b)) is the 
global optimal solution to problem (4), then u* is the 
global optimal solution to problem (1). Since Lemma 1 
effectively minimizes the objective function of the norm, 
it has become a fundamental tool for robust signal and 
image restoration, facilitating the development of 
subsequent work in this paper. 

3 New Model 

3.1 Proposal of High-Order Total Variation 
Denoising Algorithm Based on l0 Overlapping 
Combinatorial Sparsity 

In this paper, we propose a pulse denoising model 
based on overlapping combinatorial sparsity combined 
with the l0-TV model as follows: 

2
01

( ) ( ) p
po u

min o Hu b Du D uλϕ ω− + +    
≤ ≤

 (5) 

λ is the parameter controlling the sparsity penalty 
term. Increasing λ tends to lead the model towards 
generating sparse solutions, thus better meeting the 
characteristics of pulse signals. However, setting λ too 
large may result in excessive sparsity, leading to the loss 
of some important information. ω is the weight parameter 
for the l2 norm penalty term. Increasing ω strengthens the 
constraint on smoothness, helping to reduce the impact of 
noise on the signal. However, excessive reliance on 
smoothness may also lead to the loss of signal details. 

The optimization objective of this model is a 
complex non-convex function, thus iterative algorithms 
are typically employed for solving it. Common 
optimization algorithms include gradient descent, 
coordinate descent, Newton's method, among others. Due 



32 Binxin TANG et al: High Order Total Variational Denoising Algorithm Based on l0 Overlapping Combination Sparse 
 
 
 
 
 

 

to the presence of both l0 and l2 norm terms in the 
objective function, the optimization problem becomes 
more challenging. Traditional optimization methods may 
not be sufficiently effective. Therefore, we need to 
employ some special techniques or algorithms to solve it, 
such as heuristic algorithms or approximate optimization 
methods. 

Here, λ>0 is the regularization parameter used to 
balance the fidelity term and the regularization term. 
According to reference[12], a limited number of pixel 
values can be obtained for digital images. Therefore, for 
ease of discussion and computation, we only consider all 
images with pixel values within the range [0, 1]. 

In formula (5), the fidelity term of the model utilizes 
the l0 norm term. As widely recognized, the l0 norm term 
achieves sparsity by calculating the number of non-zero 
elements in a vector. The fidelity term ||o⊙(Hu–b)||0 is 
used to measure the error between the degraded image 
and the original image. Since the l0 norm term calculates 
the non-zero elements of a vector, it ensures the sparsity 
of the o⊙(Hu–b) term, making it well-suited for the 
sparsity property of impulse noise. Therefore, the new 
model proposed in this paper exhibits stronger robustness 
to the discrete values of impulse noise. 

3.2 Algorithm Solving 
Based on Lemma 1, we transform problem (5) into 

problem (6) as shown below: 
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By introducing auxiliary variables, we can rewrite 
equation (6) into the following constrained problem: 
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Then, by introducing Lagrange multipliers and 
penalty parameters, we obtain the augmented Lagrangian 
function as follows: 
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Where variables π, πz and π0 are Lagrange multiplier 
terms, and β1, β2, β3>0 are penalty parameters. 

This paper continues to use the ADMM algorithm 

for solving, and the framework for solving each parameter 
sub-problem is as follows: 
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3.3 Subproblem Solving 
Formula (9) has transformed the problem into an 

optimization problem based on the ADMM algorithm 
framework. Here are the specific solution steps for each 
parameter:  
3.3.1 Subproblem for u  
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According to the first-order optimality condition, 
solving problem (10) can be transformed into solving a 
linear system of equations: 
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Under the periodic boundary conditions of u, both 
(D2)TD2 and HTH also have block circulant with circulant 
block (BCCB) structures. Therefore, we can solve it using 
two-dimensional discrete Fourier transform, and the 
solution is as shown in formula (12): 
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3.3.2 Subproblem for v 
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Thus, formula (13) can be further calculated using 

projection: 
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(14) 

Since this subproblem is a projection onto a convex 
set, it is necessary to ensure that the pixel values of the 
recovered image are between 0 and 1. 
3.3.3 Subproblem for x  

According to formula (9), the subproblem for (x) is a 
problem with overlapping composite sparse terms, so it 
can be represented as: 
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3.3.4 Subproblem for y 
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For ease of solution, let  2 1

2

k
k ay D u π
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+= + , then it 

can be solved as: 
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Applying the IRL1 algorithm, we have: 
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. Next, the solution can be 

obtained using soft thresholding. 
3.3.5 Subproblem for z  
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Expanding formula (19) and removing the constant 
term, we get: 
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The minimum can be calculated using the following 
shrinkage operator: 
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simplify it: 
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(21) 

3.4 Update Variables and Algorithm Framework 
After solving each subproblem, it is necessary to 

update the Lagrange multipliers, as shown in formula (22): 
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In conclusion, a non-convex high-order total 
variation algorithm based on overlapping sparse 
combinations is obtained. The specific solution steps can 
be summarized as Algorithm 1: 

 
 

Algorithm 1: Solving the Optimization Problem 
1. Input  and parameters λ>0, β1, β2, β3, β4>0, group 
size  
2. Initialize parameters: u0=b, k=0 Lagrange operators 
π, πa, πb, π0 
3. Iteration: 
Calculate uk+1 according to formula (12) 
Calculate vk+1 according to formula (14) 
Calculate xk+1 according to formula (15) 
Calculate yk+1 according to formula (18) 
Calculate zk+1 according to formula (21) 
k=k+1 
4. Repeat until the stopping criteria are met 

 
3.5 Analysis of Convergence Proof 

This section provides the convergence proof of the 
proposed algorithm. The algorithm proposed in this 
chapter is represented by formula (5). Since the fidelity 
term of the model includes an l0 norm term, the model 
solved based on the ADMM framework is also 
non-convex. Extensive research has been conducted in 
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references[13-14] on the convergence of non-convex 
multi-block ADMM, discussing general convergence 
proof strategies for non-convex nonsmooth minimization 
problems. This paper also proposes several assumptions 
regarding the convergence of non-convex nonsmooth 
minimization algorithms, among which the main methods 
used to prove the convergence of non-convex nonsmooth 
algorithms are the Kurdyka–Lojasiewicz (K-L) property 
and K-L functions. Therefore, if it can be proved that the 
augmented Lagrangian function is a K-L function, then 
the non-convex multi-block ADMM algorithm will 
converge to its critical point, 0∈∂ℒA. Based on this, the 
following lemma is presented: 

Lemma 2: Formula (5) is a K-L function. 
Proof: The first term of formula (5) is a non-convex 

term based on the l0 norm, and since the l0 norm is a 
semi-algebraic function, it can be known from 
reference[15] that this term is a K-L function. The second 
term of formula (5) is an overlapping sparse combination 
term, which belongs to the category of convex 
real-analytic l2 norms. According to references[16-18], this 
term also belongs to the category of K-L functions. 
Formula (5)'s third term, a non-convex term based on the 
lp norm, employs the IRL1 algorithm for subproblem 
resolution. and it has been proven in reference[14] that 
using IRL1 to solve problems is convergent. Given that 
the sum of semi-algebraic and real-analytic functions 
adheres to the K-L property, Formula (5) also meets this 
criterion, so it’s a KL function. 

According to Lemma 2, the augmented Lagrangian 
function (8) also satisfies the K-L property and is a K-L 
function, so the algorithm proposed in this paper is 
globally convergent. In addition, the subproblems are 
either solved exactly or guaranteed to converge, and the 
OGS subproblems solved based on the MM algorithm 
also have convergence[19]. Reference[20] also proves the 
convergence of l0 norm subproblems. The three 
parameters are also solved in closed form. Therefore, the 
convergence of the algorithm proposed in this paper can 
be fully guaranteed. 

4 Experimental Results and 

Analysis 

4.1 Experimental Link and Parameter Setting 
This section mainly experiments with the proposed 

non-convex high-order algorithm based on the l0 norm. 
Four standard images (barbara (256×256), starfish 
(256×256), house (512×512), and couple (512×512)) and 
four captured images (tower (256×256), road (256×256), 
cat (512×512), and fireworks (512×512)) from the image 
dataset Set12 are selected. Simulation experiments are 
conducted by adding different levels of impulse noise and 
blur kernels. The original images are shown in Fig.1. 

 
 

Fig.1 The Original Image 
 

For Algorithm 1, the stopping criterion is defined as 
formula (23): 
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In formula (23), uk and uk+1 represent the current and 
previous iterated images, respectively. 

In the experiments, the proposed algorithm is 
compared with the l0 total variation model  (l0-TV), the l0 
overlap group sparse total variation model (l0-OGSTV), 
and the new model proposed in this paper. Since this 
paper focuses on the fidelity term of the models, the 
comparison is mainly based on the selection of fidelity 
terms, thus choosing the l0-TV and l0-OGSTV models. 

Next, the experimental parameter settings are 
discussed. To achieve the optimal image restoration effect, 
the following parameter ranges need to be determined: 
regularization parameters λ and ω, group size K in 
OGSTV, the number of iterations N in the MM algorithm, 
and the parameter p in the lp non-convex term. 

Firstly, the regularization parameter λ needs to be 
determined, which plays a crucial role in filtering noise 
and to some extent determines the quality of image 
denoise. 

Since different levels of impulse noise and blur 
kernels are added in the experiments, λ is chosen within 
certain ranges based on experimental experience: λ∈[0.1, 
2.1] for denoising, λ∈[0.03, 0.5] for adding Gaussian 
blur kernels, and λ∈[0.08, 0.6] for adding average blur 
kernels. Next, we conducted experiments on three images: 
"tower," "barbara," and "starfish," with the addition of 
30% salt-and-pepper noise and a Gaussian blur kernel of 
size 3*3 and standard deviation 2.  

The experimental results are shown in Fig.2. From 
Fig.2(a), it can be observed that the PSNR value 
continuously increases when K∈[1, 3]; however, when 
K∈(3, 10], the PSNR value decreases continuously.  

Therefore, we conclude that the maximum PSNR 
value is achieved when K=3. On the other hand, Fig.2(b) 
illustrates that with the increase of K, the SSIM exhibits a 
trend of initially increasing and then decreasing, while 
within the range K∈[2, 5], the SSIM value remains 
relatively stable. In conclusion, we select K=3 as the 
optimal group size for our model. 
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Fig.2 Experimental comparison diagram of parameter K 
 

Next, the value to be determined is the number of 
internal iterations N in the MM algorithm. When K=3, 
"tower" and "barbara" images are chosen as experimental 
images. Additionally, 30% salt and pepper noise is added 
along with a Gaussian blur kernel of size 3*3 and standard 
deviation 2. With all other experimental parameters held 
constant, we investigated the influence of different values 
of N on the denoising results. Firstly, we observed the 
variations in PSNR and SSIM, two metrics for evaluating 
image quality, as N increased. From the experimental 
results as shown in Table 1, it is evident that as N starts to 
increase from smaller values, both PSNR and SSIM show 
improvement, indicating a gradual enhancement in 
denoising effectiveness. However, once N reaches a 
certain threshold (N=5), the growth of PSNR and SSIM 
begins to plateau, and in some cases, minor fluctuations 
occur, suggesting diminishing returns in terms of image 
quality improvement with further increments in N. 

During the experimentation process, we also noted a 
significant increase in algorithm runtime as N increased. 
This is because the increase in internal iteration count 
implies the algorithm needs to perform more 
computational steps, leading to an escalation in 
computational complexity and time consumption. Such 
growth in time consumption is an important consideration 
for practical applications, as it directly impacts the 
efficiency and real-time performance of the algorithm. 

Considering the comprehensive analysis above, we 
can conclude that selecting N=5 as the internal iteration 
count for subsequent experiments is a reasonable choice. 
This selection not only ensures a certain level of 
denoising effectiveness but also controls the algorithm's 
time consumption within an acceptable range. 

During the experiment, to deeply analyze the 
specific impact of the regularization parameter in the 
non-convex term on the denoising performance of images, 
we first understood the different roles of each parameter 
in image restoration. The regularization parameter λ 
played a crucial role in initially filtering out image noise, 
while parameter K, due to its nature, might excessively 
smooth local regions of the image during noise removal. 
Additionally, relying solely on the first two terms for 
image restoration might still leave residual noise spots 
and blocky artifacts in the image. Hence, introducing the 
parameter ω aimed to address these issues, aiming to 
preserve sharp edges and textures in the image to improve 
the quality of the restored image. 

In the experiment, we selected four representative 
images: "tower," "barbara," "starfish," and "road," and 
added 30% salt-and-pepper noise and Gaussian blur 
kernels of size 3*3 and standard deviation 2 to these four 
images. Keeping the other experimental parameters 
constant, we studied the influence of different ω values on 
the denoising effect of images.The experimental results as 
shown in Fig.3 indicate that the choice of the 
regularization parameter ω significantly affects the 
quality of image restoration. From Fig.3(a), we can 
observe a slight decrease in PSNR as ω gradually 
increases from 0.1 to 0.6. This may be attributed to a 
slight decrease in the algorithm's ability to suppress noise 
as ω increases while preserving the edges and textures of 
the image. However, when ω continues to increase to the 
range (0.6, 1], the PSNR value exhibits a significant 
decrease, indicating that excessively increasing ω values 
significantly reduce the denoising effect of the image. 

 

Table 1 Experimental data table for parameter N 

Image N 1 5 10 20 50 100 1000 

tower 
PSNR 33.896 34.204 34.113 34.170 33.876 34.107 34.134 
SSIM 0.961 0.967 0.965 0.966 0.960 0.964 0.966 
TIME 8.962 11.354 13.590 18.138 33.649 57.732 513.710 

barbara 
PSNR 34.161 34.183 34.011 34.192 34.240 34.088 34.123 
SSIM 0.933 0.936 0.935 0.936 0.937 0.935 0.935 
TIME 8.892 10.775 12.842 17.341 40.422 56.500 515.171 
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Similarly, Fig.3(b) shows the trend of SSIM with ω 
values. It is important to note that the statement "when 
ω∈[0.7, 0.6]" in the original text contains a logical error 
because the starting value of the interval should be less 
than or equal to the ending value. Assuming this is a 
typographical error, we correct it to "when ω gradually 
decreases from 0.7 to 0.6." Within this range, SSIM shows 
a significant downward trend, indicating a decrease in the 
structural similarity of the image and a decrease in image 
quality. 

In conclusion, based on the comprehensive analysis 
above, we can conclude that setting the range of 
parameter ω to [0.1, 0.6] is a reasonable choice in this 
experiment. This range can achieve good denoising 
effects while preserving the edges and textures of the 
image and avoiding significant decreases in PSNR and 
SSIM. 

 

 
 

Fig.3 Comparison of PSNR and SSIM values after image denoise 
under different –values 

 

Another parameter affecting the edge texture of the 
image is p in the q sub-problem, where p takes values in 
the range (0, 1] for the lp norm. Here, three images, 
"tower," "barbara," and "starfish," were selected. They 
were subjected to 30% salt and pepper noise and a 
Gaussian blur kernel of size 3*3 with a standard deviation 
of 2. The experimental results, as shown in Fig.4, 
demonstrate a significant influence of the p-value on the 
quality of image recovery. Firstly, from Fig.4(a), it can be 
observed that as the p-value gradually increases from 0.3 
to 0.7, the PSNR value exhibits a consistent upward trend. 

This indicates that within this range, as the p-value 
increases, the denoising effect on the image gradually 
strengthens, leading to an improvement in image quality. 
Additionally, it is noteworthy that in Fig.4(b), the SSIM 
value also shows an increasing trend within this range of 
p-values, further confirming the enhancement in image 
quality. 

However, it is important to note that although both 
PSNR and SSIM values increase as the p-value grows, 
this does not imply that the p-value can be increased 
indefinitely. Since the p-value is constrained within the 
range (0, 1] in the definition of the lp norm, the p-value 
cannot exceed 1. Furthermore, from the experimental 
results, it can also be observed that as the p-value 
approaches 1, the rate of increase in PSNR and SSIM 
values may slow down or even exhibit a declining trend. 
This could be attributed to excessively large p-values 
weakening the algorithm's ability to suppress noise, thus 
affecting the quality of image recovery. 

In summary, based on the analysis of the 
experimental results, we selected a range of  p∈[0.3, 
0.7]. This range effectively maintains image edges and 
textures while achieving good denoising results, and it 
avoids excessive fluctuations in PSNR and SSIM values. 

 

 
 

Fig.4 Comparison of PSNR and SSIM values after image 
denoise under different p-values 

 

4.2 Image Denoising 
This section mainly discusses the image denoising 

performance under impulse noise, with tests conducted on 
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images containing 30%, 50%, and 70% impulse noise, 
respectively.  

Three sets of images are selected for demonstration, 
where the first image in each set's first row represents the 
noisy image, and the rest of the images in the first row 
depict the denoising effects of various comparative 
models and our model. The second row in each set shows 
enlarged local details of the restored images, as illustrated 
in Figs.5 to 7. 

 

 
 

Fig.5 barbara (256×256) Denoising effect image (30%), (a) Noisy 
image, (b)-(d) Denoising effect of different models, (e) Local image, 

(f)-(h) Different models denoising local enlarged image 

 

 
 

Fig.6 couple (512×512) Denoising effect image (50%), (a) Noisy 
image, (b)-(d) Denoising effect of different models, (e) Local image, 

(f)-(h) Different models denoising local enlarged image 
 

 
 

Fig.7 road (256×256) Denoising effect image (70%), (a) Noisy 
image, (b)-(d) Denoising effect of different models, (e) Local image, 

(f)-(h) Different models denoising local enlarged image 

From Fig.5 to Fig.7, it can be observed that as the 
noise increases, the difficulty of image restoration also 
increases. On the whole, the total variation (TV) model 
based on the l0 norm can effectively remove image noise, 
but its ability to handle image edges is insufficient, and 
the restored image often exhibits a staircase effect. For 
example, in Fig.6(f), there is significant distortion in the 
right part of the person's face, and noticeable blocky 
artifacts appear in the collar area. The contour of the 
leaves in Fig.7(f) is also not clear. The overlapping sparse 
total variation model based on the l0 norm performs better 
in preserving edge textures compared to the l0-TV model, 
but it may result in local oversmoothing of the image. For 
instance, in Fig.6(g), there is a merging of eye and 
eyebrow information in the right eye area, leading to 
incorrect image details. The proposed new model in this 
paper shows promising results in both denoising and edge 
texture preservation. For example, in Fig.6(h), even the 
most challenging facial features are well-preserved with 
clear facial characteristics, while effectively suppressing 
the staircase effect. 

To further objectively validate the effectiveness of 
the algorithm in this paper, we evaluate it using PSNR and 
SSIM metrics, supplemented by the TIME metric. After 
the experiment, the PSNR, SSIM, and TIME values for 
the eight groups of experimental images with 30%, 50%, 
and 70% impulse noise are shown in Tables 2, 3 and 4, 
respectively. 

 
Table 2 The PSNR (dB) values of different models after denoising 

Noise grade Image l0-TV l0-OGSTV Our 

30% 

barbara 31.869 33.599 33.734 
starfish 31.514 33.200 34.905 
tower 31.083 32.039 32.640 
road 30.408 31.000 31.731 

house 43.390 46.665 49.733 
couple 34.057 35.407 36.345 

cat 37.855 39.618 40.008 
fireworks 29.774 31.797 33.112 

50% 

barbara 29.247 30.009 30.738 
starfish 28.080 28.882 30.925 
tower 28.245 28.653 29.325 
road 27.736 28.295 28.510 

house 39.807 41.301 46.121 
couple 30.506 31.338 32.453 

cat 35.092 35.796 36.643 
fireworks 26.394 27.420 29.122 

70% 

barbara 26.541 25.421 27.973 
starfish 24.750 23.888 27.329 
tower 25.797 24.976 26.513 
road 25.270 25.302 25.919 

house 35.594 32.434 39.681 
couple 27.324 26.472 28.896 

cat 32.408 27.344 33.882 
fireworks 23.196 24.701 25.324 
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Table 3 The SSIM values of different models after denoising 

Noise grade Image l0-TV l0-OGSTV Our 

30% 

barbara 0.943 0.957 0.956
starfish 0.959 0.971 0.977
tower 0.958 0.967 0.969
road 0.917 0.927 0.933

house 0.992 0.995 0.996
couple 0.956 0.966 0.969

cat 0.978 0.984 0.985
fireworks 0.967 0.978 0.982

50% 

barbara 0.898 0.913 0.918
starfish 0.911 0.927 0.947
tower 0.914 0.926 0.931
road 0.844 0.859 0.860

house 0.979 0.987 0.991
couple 0.906 0.922 0.932

cat 0.954 0.965 0.967
fireworks 0.928 0.927 0.957

70% 

barbara 0.827 0.792 0.864
starfish 0.819 0.771 0.889
tower 0.837 0.822 0.875
road 0.729 0.731 0.751

house 0.949 0.935 0.972
couple 0.816 0.805 0.858

cat 0.914 0.785 0.935
fireworks 0.844 0.795 0.903

 
Table 4 The TIME values of different models after denoising 

Noise grade Image l0-TV l0-OGSTV Our 

30% 

barbara 1.339 7.252 7.063 
starfish 1.318 7.392 8.095 
tower 1.428 7.474 8.124 
road 1.169 7.537 7.607 

house 6.160 37.965 42.064
couple 7.228 40.397 48.170

cat 6.646 35.903 48.090
fireworks 8.738 43.511 55.457

50% 

barbara 1.449 8.084 9.560 
starfish 1.609 8.485 9.311 
tower 1.509 8.001 9.199 
road 1.312 7.781 8.929 

house 7.149 42.860 49.418
couple 8.094 42.157 52.847

cat 7.682 39.156 52.776
fireworks 8.609 44.297 65.828

70% 

barbara 2.134 7.998 9.964 
starfish 1.604 8.153 10.331
tower 1.661 8.363 10.698
road 1.561 7.901 9.786 

house 8.288 46.621 55.234
couple 8.811 38.318 57.720

cat 8.178 44.717 55.457
fireworks 8.922 39.035 62.924

According to the experimental data in Tables 2 to 4, 
it is evident that under conditions of 30%, 50%, and 70% 
impulse noise, the PSNR and SSIM values of our model 
are significantly higher than those of other comparative 
models. Moreover, when dealing with different sizes of 
noisy images, our algorithm achieves higher image 
evaluation metric values while adding less processing 
time. Therefore, the new algorithm proposed in this 
paper for removing impulse noise can produce clear 
images, preserve edge information, and control algorithm 
processing time, making it suitable for practical 
applications. 

4.3 Image Deblurring 
This section mainly discusses image deblurring 

using two types of blur kernels: Gaussian blur kernel and 
average blur kernel. Fig.8 and Fig.9 respectively show the 
denoising effects of images with 3×3 Gaussian kernel (G) 
and 3×3 average kernel (A) with a standard deviation of 2, 
along with 30% added impulse noise. From subjective 
visual analysis, all three models can effectively remove 
image noise and blur. However, the l0-TV model tends to 
oversmooth local image regions, as seen in Fig.8(b) where 
the texture details of the cat's neck are smoothed. The 
l0-OGSTV model also has deficiencies in handling local 
details of the image, as evident in Fig.9(g) in the fireworks 

  

 
 

Fig.8 Deblurring effect of cat (512×512) with Gaussian blur (30%), 
(a) Blurred image, (b)-(d) Denoising effect of different models, (e) 

Blurred local image, (f)-(h) Enlarged images of denoised local 
details by different models 

 

 
 

Fig.9 Deblurring effect of fireworks (512×512) with Gaussian blur 
(30%), (a) Blurred image, (b)-(d) Denoising effect of different 

models, (e) Blurred local image, (f)-(h) Enlarged images of 
denoised local details by different models 
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smoke part. Our new model not only overcomes these 
shortcomings but also fully considers image structural 
information, enabling better edge handling and further 
suppression of the staircase effect. 

The comprehensive evaluation of image denoising 
effects typically involves considering multiple evaluation 
metrics, including PSNR, SSIM and TIME, among others. 
These metrics provide information from different aspects, 
and their combined use can offer a comprehensive 
understanding of the effectiveness of denoising 
algorithms. PSNR is one of the classic metrics for 
assessing image reconstruction quality, measuring the 
denoising effect by calculating the mean squared error 
between the original image and the denoised image. A 
higher PSNR value indicates better denoising effects. 
However, PSNR only considers pixel-level differences in 
images, ignoring the nonlinear characteristics of human 
visual perception. SSIM is another commonly used metric 
for image quality assessment. It considers not only 
pixel-level differences but also the structural information 
of the image and the perceptual characteristics of the 
human visual system. SSIM values range from -1 to 1, 
with values closer to 1 indicating greater image similarity, 
hence better denoising effects. TIME is one of the 
important metrics for evaluating the practicality of 
algorithms. Typically, users expect high-quality denoising 
results while minimizing the processing time of the 
algorithm. Therefore, it is necessary to consider the 
trade-off relationship between processing time and 
denoising effects comprehensively. By considering the 
results of metrics such as PSNR, SSIM, and processing 
time, the performance of denoising algorithms can be 
evaluated from multiple perspectives. The final 
evaluation should be a conclusion that comprehensively 
considers both image quality and algorithm efficiency. 

Table 5 and Table 6 respectively display the 
evaluative metrics related to image denoising that are 
utilized for various models incorporating different blur 
kernels.  

 
Table 5 The PSNR (dB), SSIM, and TIME values of different 

models after removing Gaussian blur 

Image Evaluation Index l0-TV l0-OGSTV OUR

starfish 

PSNR 35.375 36.142 37.677
SSIM 0.972 0.965 0.978

TIME 1.664 8.329 9.036

cat 

PSNR 39.898 40.362 40.695

SSIM 0.975 0.970 0.979

TIME 9.428 32.073 59.344

tower 

PSNR 32.898 34.277 34.330

SSIM 0.975 0.956 0.968

TIME 9.428 8.400 10.885

fireworks 
PSNR 33.953 36.515 37.407

SSIM 0.982 0.972 0.989
TIME 8.858 46.652 68.092

Table 6 The PSNR (dB), SSIM, and TIME values of different 
models after removing Average blur 

Image Evaluation Index l0-TV l0-OGSTV OUR

starfish 

PSNR 35.673 35.836 37.352

SSIM 0.971 0.964 0.978

TIME 1.603 9.385 10.905

cat 

PSNR 39.487 39.719 40.479

SSIM 0.970 0.965 0.978

TIME 8.911 33.536 61.843

tower 

PSNR 32.696 34.178 34.226

SSIM 0.959 0.950 0.967

TIME 1.696 8.717 10.805

fireworks

PSNR 34.071 35.698 36.734

SSIM 0.980 0.968 0.987

TIME 8.798 43.846 67.677

 
It is distinctly observable that our innovative new 

model proposed in this document significantly surpasses 
other comparative models in terms of Peak Signal to 
Noise Rati and Structural Similarity Index Measure 
values. 

In summary, the new model proposed in this paper 
not only excels in subjective evaluations but also 
outperforms in objective measures compared to the other 
two conventional models, demonstrating remarkable 
capabilities in both deblurring and denoising effects. 

5 Conclusion 
This paper proposes a non-convex high-order image 

denoising algorithm based on the l0 norm fidelity term. By 
improving the fidelity term of the model, the algorithm 
achieves robustness against outliers in impulse noise 
while using high-order non-convex terms to preserve fine 
details of image edge textures. An enhanced ADMM 
algorithm is employed for solving, where the 
minimization problem of the l0 norm is equivalently 
solved as an MPEC problem. The convergence of the 
proposed model is also demonstrated, and extensive 
experiments are conducted to validate the effectiveness of 
the proposed algorithm. Overall, the experimental results 
show that the proposed algorithm enhances denoising 
effectiveness and better preserves image information. 
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