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Abstract:  In  order  to  improve  the  performance  degradation  prediction  accuracy  of  proton 

exchange membrane fuel cell (PEMFC), a fusion prediction method (CKDG) based on adaptive 

noise  complete  ensemble  empirical  mode  decomposition  (CEEMDAN),  kernel  principal 

component analysis (KPCA) and dual attention mechanism gated recurrent unit neural network 

(DA‐GRU) was proposed. CEEMDAN and KPCA were used  to extract  the  input  feature data 

sequence, reduce the influence of random factors, and capture essential feature components to 

reduce  the  model  complexity.  The  DA‐GRU  network  helps  to  learn  the  feature  mapping 

relationship  of  data  in  long  time  series  and  predict  the  changing  trend  of  performance 

degradation data more accurately. The actual aging experimental data verify the performance of 

the CKDG method. The results show that under the steady‐state condition of 20% training data 

prediction,  the CKDA method  can  reduce  the  root mean  square  error  (RMSE) by  52.7%  and 

34.6%, respectively, compared with the traditional LSTM and GRU neural networks. Compared 

with the simple DA‐GRU network, RMSE is reduced by 15%, and the degree of over‐fitting  is 

reduced, which has higher accuracy. It also shows excellent prediction performance under the 

dynamic condition data set and has good universality. 
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0 Introduction 
Proton exchange membrane fuel cell (PEMFC) is 

considered to be one of the most promising green power 
sources due to its high energy conversion efficiency, high 
power density, and clean reaction products[1-2]. However, 
due to the influence of material degradation and complex 
operating conditions[3], the performance of PEMFC will 
decline and even lead to failure. Therefore, accurate 
prediction of PEMFC performance degradation is 
significant for prognostic and health management (PHM) 
technology and related optimal operational decisions to 
extend its service life and improve its performance. 

At present, there are three types of PEMFC 

performance degradation prediction methods: model- 
based methods, data-driven methods, and hybrid methods. 
The model-based method relies on the physical modeling 
of the internal degradation behavior of PEMFC to establish 
an empirical model of PEMFC performance degradation 
trajectory[4-6]. Bressel M et al.introduced the aging factors 
of ohmic resistance and limiting current density, 
constructed a linear attenuation model of the fuel cell, used 
aging factors as health indicators, used an extended 
Kalman filter to estimate aging factors in real-time, and 
predicted the remaining service life of fuel cell[7]. Chen et 
al.constructed a linear empirical degradation model and 
applied an unscented Kalman filter to predict the remaining 
useful life of postal fuel cell electric vehicles[8]. However, 
the PEMFC system has multi-physical and multi-scale 
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complex characteristics, often showing nonlinear solid 
characteristics, and its degradation mechanism is not 
completely clear[9]. Currently, there is no general modeling 
method to describe all the degradation mechanisms of 
PEMFC[10]. However, the hybrid method is still more 
dependent on the construction of the fuel cell model in 
essence, and the parameters of the introduced filtering 
algorithm are susceptible to noise. 

Compared with the model-based method, which is 
highly dependent on model complexity and parameter 
selection, the data-driven prediction method uses aging 
data to establish a PEMFC degradation model, which 
avoids the complex internal mechanism relationship of 
PEMFC and has greater flexibility and excellent 
nonlinear fitting ability[11]. Data-driven methods are also 
widely used in the remaining life prediction of lithium-ion 
batteries[12]. PEMFC has more complex operating 
conditions than lithium-ion batteries, and the decay 
process involves strong time dependence. The design and 
training of prediction models pay more attention to 
capturing dynamic characteristics in time series. For 
example, a recurrent neural network (RNN) contains a 
recursive hidden layer suitable for time series prediction 
processing. Various RNN architectures have been studied 
in the literature[13]. Zuo et al.proposed a recurrent neural 
network (RNN) model based on attention processing data 
and proved that the attention mechanism can further 
improve the performance of the model[14]. Ma et al. 
proposed a grid-based long short-term memory (G-LSTM) 
network, which has the potential to deal with complex 
spatio-temporal sequence data, but the model contains a 
large number of parameters that are prone to overfitting[15]. 
Zhang et al.proposed a Bi-directional Gated Recurrent 
Unit (Bi-GRU) recurrent neural network, adjusting the 
model's hyperparameters to obtain the optimal 
hyperparameter combination, and the model's universality 
has room for improvement[16]. The GRU network uses 
update gates and reset gates to save and filter the previous 
information. Compared with LSTM, it simplifies the 
iterative structure, can screen helpful information more 
quickly and avoid gradient explosion and gradient 
disappearance problems, and has more efficient 
performance in the prediction application of PEMFC 
multi-factor and multi-data input[17]. However, most of 
the PEMFC performance degradation prediction 
performance based on the GRU method is not ideal, 
which may be due to the following reasons: 1) Directly  

using nonlinear and noisy original aging data for 
prediction is easily affected by noise and spikes in the 
original data. 2) The ability to extract implicit aging 
features is limited, and it is difficult to accurately learn 
features when dealing with long-term sequence data with 
complex information. 3) There are over-fitting or 
under-fitting problems in the training process. 

Because of the above problems, this paper proposes 
a fusion prediction method (CKDG) of CEEMDAN, 
KPCA, and DA-GRU. The CEEMDAN is used to 
decompose the characteristic data affecting the output 
voltage. The KPCA algorithm is used to extract the 
high-weight data from the component data, and the 
DA-GRU network is used to extract the weight selectively. 
The ability to completely capture long-term 
time-dependent relationships improves the prediction 
performance of PEMFC voltage decay data. The main 
contributions of this paper are as follows:  

1) A fusion prediction method that can simplify the 
feature data set and accurately extracting the feature 
weight is proposed, which provides a new perspective for 
PEMFC performance degradation prediction. 

2) The CKDG method is used to predict the 
performance degradation of PEMFC, and the feasibility 
and universality of the CKDG method are verified on 
different data sets. 

3) Compared with other mainstream neural network 
methods, CKDG can provide more accurate prediction 
performance with less training data. 

1 Experiment and Dataset Analysis 
The CKDG fusion prediction method is validated 

using two aging data sets from the experimental PEMFC 
stack. The PEMFC aging experiment is implemented by 
the Federation for Fuel Cell Research (FCLAB). The 
PEMFC comprises an industrial membrane, a diffusion 
layer, and a machined port plate and consists of five single 
cells with an area of 100 cm2. 

The constant current of the fuel cell working under 
the static current load (FC1) is 70 A, the nominal current 
of the fuel cell working under the dynamic current load 
(FC2) is 70 A, and it has a 7 A oscillating current with a 
frequency of 5 kHz. The experimental platform and load 
settings are shown in Fig.1. The experiment includes two 
aging data sets: electrochemical impedance spectroscopy  

 
Fig.1 Fuel cell experimental platform and load setting[18]  
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(EIS) data and polarization data[18]. The physical 
parameters involved in the experiment can be measured 
and controlled by LabVIEW® 2014 and the self-made 
interface in the national instrument control system, 
respectively. Table 1 lists the physical parameters 
involved in the test. In addition, part of the voltage 
recovery phenomenon is caused by polarization curve 
tests and EIS measurements. The collected aging 
parameters are shown in Table 2. In this paper, the 
degradation trend is reflected by the change of stack 
voltage drop with time. 

 
Table 1 Range of physical parameters controlled 

Parameter Control range 

Cooling temperature 20℃-80℃ 

Cooling flow 0-10 l/min 

Gas temperature 20℃-80℃ 

Gas humidification 0-100%RH 

Air flow 0-100 l/min 

H2 flow 0-30 l/min 

Gas pressure 0-2bars 

Fuel Cell current 0-300A 
 

Table 2 Aging parameters gathered during experiments 

Parameter Physical meaning 
Time  Time Ageing time (h) 

U1 to U5; Single cells and stack voltage (V) 
I; J  Current (A) and current density (A/cm2)

TinAIR; ToutAIR Inlet and outlet temperatures of Air (°C)

TinWAT; ToutWAT  Inlet and outlet temp. of cooling 
Water(°C) 

TinH2; ToutH2 Inlet and outlet temperatures of H2(°C)
PinAIR; PoutAIR Inlet and outlet Pressure of Air (mbara)

PinH2; PoutH2  Inlet and outlet Pressure of H2 (mbara)
DinH2; DoutH2 Inlet and outlet flow rate of H2 (l/mn)

DWAT  Flow rate of cooling water (l/mn) 
DinAIR; DoutAIR  Inlet and outlet flow rate of Air (l/mn)

HrAIRFC  Inlet Hygrometry (Air)-estimated (%)

 
Because the voltage data of the aging test contains 

certains noise and spikes, the large number of 
experimental data points may increase the complexity of 
the model and the calculation time. In order to effectively 
obtain the degradation trend, the Gaussian weighted 
moving average filter is used to smooth the original 
voltage data. Filter out high-frequency disturbances and 
retain useful low-frequency trends in the time series[19]. 
Then, FC1 and FC2, two new voltage decay data sets with 
an interval of 1 h, are obtained, denoted as FC1, as shown 
in Fig.2. The two new voltage aging data sequences 
contain 1154 and 1020 sets of voltage data, respectively. 
At the same time, the data integration of 23 characteristic 
environmental parameters of the stack voltage is divided 
into a series of 1h intervals, and a unified complete data 

set is formed with the new voltage aging data sequence. In 
addition, it can be seen in Fig.2 that the voltage 
degradation of the FC1 test is much more regular and 
stable than that of FC2. 

 

 
 

Fig.2 Degradation data of stack voltage 
 

2 Methodology 
2.1 Prediction Framework 

In this work, the stack voltage data is used to display 
the performance of the PEMFC system, and the CKDG 
method is implemented, as shown in Fig.3. 

In the framework of this method, the characteristic 
data affecting the output voltage of PEMFC, such as 
temperature, flow rate, humidity, current density, and 
superimposed voltage, are first decomposed into n 
Intrinsic Mode Function(IMF) sequences by CEEMDAN 
and the nth IMF sequence is also called residual sequence. 
Then, it is input into the KPCA algorithm to complete the 
high-weight data extraction. The Gaussian kernel is used 
as the kernel function to extract the IMF component 
sequence with a contribution more significant than 90% 
and reintegrate it into a new stack voltage-related data set. 
Finally, the DA-GRU network is used to extract the 
feature data weights at each time selectively, and the 
long-term time dependence is completely captured. The 
multi-input single-output mode obtains the final stack 
voltage prediction result. 

2.2 CEEMDAN 
Adaptive noise complete ensemble empirical mode 

decomposition CEEMDAN algorithm adaptively adjusts 
the noise coefficient based on the EMD algorithm to 
generate Gaussian noise with different signal-to-noise 
ratios. It introduces the signal to be decomposed, which 
effectively avoids modal aliasing and almost no 
reconstruction error[20]. The operation data of PEMFC 
usually have nonlinear and non-stationary characteristics, 
which may contain noise introduced by measurement 
errors, environmental changes, and other factors. 
CEEMDAN can effectively process nonlinear and noisy 
feature data and extract more obvious feature data. The 
specific steps are as follows: 
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Fig.3 Framework of CKDG data prediction method 
 

Step 1: The white noise sequence with a K times mean 
value of 0 is added to the decomposition sequence f(t), and 
the signal sequence fi(t) containing noise is obtained. FIMF1, 

i(t)(i=1, 2, ..., N) is obtained after N times EMD 
decomposition of this sequence, and the arithmetic average 
value is taken to obtain the first modal component FIMF1(t): 
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where 0  is the noise coefficient, ωi(t) is the white noise 
sequence which obeys the standard normal distribution 
added by the i th decomposition. 

Step 2: Calculate the first residual component : 
1 1( ) ( ) ( )IMFr t f t F t  , define Ej(·) as the jth modal 

component after EMD decomposition of the sequence, 
then decompose 1 1 1( ) ( ( ))ir t E t   to obtain: 
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Step 3: Repeat step 2 to obtain the remaining modal 
components and residual components until the number of 
extreme points of the obtained residual components is less 
than or equal to 2, the decomposition is stopped, and the 
intrinsic modal component FIMFK and the final residual 
component R(t) are obtained. The final residual 
component can be expressed as: 

      
1

K

IMFi
i

R t f t F t


   (3) 

2.3 KPCA 
The feature data set of PEMFC contains multiple 

feature components after CEEMDAN processing, and 
low correlation components need to be removed to reduce 
the difficulty of model processing.The KPCA method is a 
classical nonlinear dimensionality reduction method 
based on the kernel, which can retain the global 
characteristics of data. The basic principle of the 

algorithm is to use the nonlinear function ϕ(x) to map the 
original data xi to the high-dimensional space K to reduce 
the original data's nonlinearity first. Then, PCA is 
performed on the data in the high-dimensional space[21]. 
The primary calculation process of the KPCA method is 
to solve the eigenvalues and eigenvectors of the 
covariance matrix in high-dimensional space K: 

The covariance matrix of the mapped data in the 
high-dimensional space K is as follows: 
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By converting Eq. (4), the characteristic equation 
can be obtained as follows: 

 w Cov w     (5) 
Where λ is the eigenvalue and w is the corresponding 

eigenvector. Converting Eq. (5), we can get: 
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The kernel function      ,  ,  i j i jKer x x x x      

is introduced, and the projection of the mapping data in 
the high-dimensional space K is calculated to be 

 
1
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N

j
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i
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

  . The kernel function used in the 

KPCA method is the Gaussian kernel function 
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, where σ is the bandwidth 

of the Gaussian kernel function. 
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2.4 DA-GRU Network 
The traditional GRU network has gradient 

disappearance and explosion, and the traditional 
encoder-decoder network cannot capture long-term 
dependencies[22].In order to improve this limitation, a dual 
attention mechanism is introduced to comprehensively 
select the parameters that affect the output voltage of 
PEMFC. Based on Seq2Seq, an attention mechanism is 
introduced in both the encoder and decoder stages to form 
a DA-GRU network to achieve more targeted feature 
selection and enhance the neural network's grasp of 
temporal dependencies. 

In the encoder, the feature attention base on GRU 
(FA-GRU) is used to selectively determine the importance 
weight of the relevant driving sequence when predicting 
the current target sequence. In the decoder, we use the 
Temporal Attention base on GRU (TA-GRU) to select the 
temporal importance weight of the hidden state of the 
relevant encoder. Using these two attention mechanisms, 
DA-GRU can accurately select relevant input features, 
capture the long-term time dependence of the time series, 
and finally output the predicted value of the voltage series 
for the future. Fig.4 shows the visual description of the 
model, where: 

(a) Encoder: 
In the overall framework, the encoder can be regarded 

as an RNN. For the time series prediction problem, given 
the input sequence X=(x1, x2, ..., xT), n

tx R  (where n is 
the number of driving sequences), the encoder can be 
represented by a map from xt to ht as follows: 

  1 1,  t t th f h x    (8) 

Where m
th R  is the hidden size of the encoder at 

time t, m is the size of the hidden state, f1 is a nonlinear 
function, and the GRU structure is selected as f1 to capture 
the long-term dependence of the hidden state. As shown 
in Fig.5, each GRU structure has a cell state with a state of 
st at time t, which is retained in the hidden state of the 
GRU and will not be completely exposed to the outside. 
The access to the cell state is controlled by two sigmoid 
gates: rt (the reset gate) and zt (the update gate). The 
update of the GRU structure can be summarized as 
follows (9): 

 
 

Fig.5 GRU Architecture Flowchart 
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   (9) 

Among them, tx  is the input of the neuron, ht–1 is 
the state of the hidden layer at the previous moment, and 
Wr, Wz and Wh are the weight matrices of the reset gate rt, 
the update gate zt and the hidden layer, respectively. 

Based on the given kth input drive sequence, 
 1 2,  ,  ,  k k k k T

Tx x x x R  , referring to the hidden state 
ht–1 and the unit state st–1 at the previous moment, the 
feature attention mechanism is constructed in the GRU 
unit of the encoder: 

  1tanhk T k
t e e t ee v W h U x   (10) 
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k
tk

t n i
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e
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Among them, T
ev R , T m

eW R   and T T
eU R   

are the parameters that need to be learned. k
t  is the 

importance weight of the kth input feature at time t. The 
softmax function is applied to k

te  to ensure that the sum 
of ownership weights is 1. Using these attention weights, 
the driver sequences related to the predicted target 
sequence can be selectively extracted. 

 

 

 
Fig.4 DA-GRU Architecture Flowchart 
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       1 1 2 2,  ,  ,  
Tn n

t t t t t t tX x x x     (12) 
Then the hidden state update at time t can be 

expressed as: 1 1( ,  )t t th f h x  , and the weight matrix is 
updated according to the GRU, replacing xt with the 
newly calculated tx . 

(b) Decoder: 
The decoder introduces temporal attention based on 

the GRU network and uses it to quantify the influence of 
hidden states at different historical moments on the 
current state. The influence of hidden states at high weight 
moments is highlighted through weight distribution, and 
the importance weights of hidden states of related 
encoders in all time steps are selectively determined, 
which provides more accurate information for long-time 
series prediction and improves prediction accuracy[23]. 

According to the previous hidden state 1
p

td R   of 
the decoder, the temporal attention mechanism weight 
coefficient i

tl  of the hidden state of each encoder at time t 
is calculated: 

     1tanh ,  1i T
t d d t d il v W d U h i T  ≤ ≤  (13) 

Where vd and Wd  is the weight parameter of the 
multi-layer perceptron, and Ud  is the bias parameter of 
the multi-layer perceptron. 

The obtained weight coefficient i
tl  of the temporal 

attention mechanism is normalized by the softmax 
function of Equation (14), and the influence of different 
hidden states ( 1,  2,  ,  )ih i T   on the current hidden 
state is quantified, which is recorded as i

t . 
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Where i
t  denotes the predictive importance weight 

of the hidden state of the i th encoder. Since the hidden 
state hi of each encoder is a nonlinear mapping of the 
input data that changes over time, the attention 
mechanism calculates the context vector ct as the 
weighted sum of all hidden state {h1, h2, ..., hT} of the 
encoder: 

 
1

T
i

t t i
i

c h


  (15) 

Where tc  changes with the change of time step. 
Similar to the encoder, they are combined with the history 
value 1 2 1( ,  ,  ,  )Ty y y   of the target sequence to obtain: 

  1 1 1;T
t t ty w y c b       (16) 

Where   1
1 1;  m

t ty c R 
    is the concatenation 

matrix of the context vector ct–1 calculated in decoder 
inputs yt–1 and expression (15), and parameters 1T mw R   
and b R  map the concatenation matrix to the size of 
the decoder input. The calculated 1ty   in (16) can be 
used to update the hidden state of the decoder at time t: 

  2 1 1,  t t td f d y    (17) 

The GRU is selected as the nonlinear function f2. In 
this kind of NARX model, the purpose is to use the 
DA-GRU network to approximate the function F and use 
the historical values of the target sequence and the driving 
sequence to obtain the current output ˆTy  of the target 
sequence. ˆTy  can be expressed by Eq. (18): 
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Among them,  ; p m
T Td c R   is the concatenation 

matrix of the decoder hidden state and the context vector. 
Parameters Wy

 p p mR    and bw  Rp map the 
concatenation matrix to the decoder hidden state. The 
linear function with parameters vyRp and b R  gives 
the final prediction result of the network. 

3 Performance Index Test 
In this section, the analysis is mainly divided into 

three steps: 1) The CEEMDAN and KPCA algorithms are 
used to optimize the feature data sequences of the two 
data sets, and the data complexity is reduced after 
decomposition and dimensionality reduction. 2) Verify 
the CKDG method under the FC1 data set, compare the 
prediction performance of the other three methods, and 
compare the model prediction ability under different 
training set lengths. 3) Based on the FC2 dataset, the 
CKDG method is used to predict the length of different 
training sets, and the universality of the model framework 
is verified. 

Program in Windows 11 64bit computer with AMD 
Ryzen 7 5800H CPU 3.2 GHz and NVIDIA GeForce 
GTX 3060 Laptop GPU with 6 GB memory. The 
CEEMDAN-KPCA is based on MATLAB R2022a, while 
CKDG framework is conducted based on Python3.9.16, 
Pytorch1.12.0 environment. 

In order to evaluate the performance of the CKDG 
method proposed in this paper, different performance 
indicators are used to evaluate the prediction effect of 
CKDG from the aspect of prediction accuracy. Including 
root mean square error RMSE, mean absolute percentage 
error MAPE, mean absolute error MAE, coefficient of 
determination R2. These indicators are defined as follows: 
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Among them, xi - the actual value of the output voltage 
of the fuel cell stack ; ˆix  - the predicted value of the output 
voltage of the fuel cell stack ; ix -The mean value of the 
output voltage of the fuel cell stack. The smaller the first 
three indicators, the higher the prediction accuracy. The 
closer R2 is to 1, indicating that the higher the fitting degree 
of prediction, the better the prediction accuracy. 

3.1 Case I:FC1/FC2 Data Set Optimization 
Based on FC1 and FC2 data sets, CEEMDAN is used 

to expand the data. CEEMDAN modal decomposition is 
performed on 23 sets of characteristic data sequences 
except the heap voltage sequence, which is decomposed 
into n intrinsic mode function (IMF) sequences. The nth 
IMF sequence is also called the residual sequence. The 
decomposition results are shown in Table 3. There are 240 
groups of samples after the decomposition of FC1 feature 
data, including modal components (217 groups) and 
residuals (23 groups). There are 231 groups of samples 
after the decomposition of FC2 feature data, including 
modal components (208 groups) and residuals (23 groups). 

In order to effectively obtain the data sequence with 
a high contribution to the prediction sequence, the kernel 
principal component analysis method is used for 
correlation analysis to eliminate the low contribution data. 
The characteristic modal components and residual 
sequences processed by CEEMDAN are introduced into 
KPCA. The KPCA method is used to reduce the dimension 
of multi-dimensional data affecting load forecasting, and 
the data sequences with a contribution rate > 90% are 
extracted. As shown in Fig.6, the cumulative contribution 
rate of 20 data of FC1 is 90.29%, and the cumulative 
contribution rate of 25 data of FC2 is 90.14%. 

 

Table 3 FC1/ FC2 characteristic data subscales 

Parameter IMF of 
FC1  

Residuals 
of FC1 

IMF of 
FC2 

Residuals 
of FC2 

U1 9 1 9 1 
U2 9 1 9 1 
U3 9 1 9 1 
U4 9 1 9 1 
U5 9 1 9 1 
J 10 1 9 1 
I 10 1 9 1 

TinH2 9 1 9 1 
ToutH2 9 1 9 1 
TinAIR 11 1 9 1 
ToutAIR 9 1 9 1 
TinWAT 10 1 9 1 

ToutWAT 10 1 9 1 
PinAIR 9 1 10 1 

PoutAIR 10 1 9 1 
PoutH2 9 1 9 1 
PinH2 9 1 9 1 
DinH2 9 1 9 1 
DoutH2 10 1 10 1 
DinAIR 10 1 9 1 
DoutAIR 9 1 8 1 
DWAT 10 1 9 1 

HrAIRFC 9 1 9 1 
SUM 217 23 208 23 

 
 

Fig.6 Contribution value distribution. (a) FC1; (b) FC2 
 

3.2 Case II: FC1 Prediction Results 
In this section, based on the FC1 data set processed 

by the CEEMDAN-KPCA method, the CKDG fusion 
prediction method and the LSTM, GRU, and 
DA-GRU-only methods are used to achieve short-term 
voltage decay degradation prediction, and 200 epochs are 
trained. The prediction characteristics of the four methods, 
when the training data set accounts for 20%, are analyzed 
in detail, and the prediction accuracy of the four methods is 
compared. The accuracy data are shown in Table 4. At the 
same time, in order to compare the performance of the four 
methods more systematically, the voltage degradation 
prediction results of the four methods when the proportion 
of training data set is 20%, 30%, 40%, and 50% are 
analyzed, as shown in Fig.7(a)-(d). The results show that 
with the increase in the proportion of training data, the 
prediction accuracy of all models is improved, and the 
CKDG fusion method maintains the best prediction 
accuracy in the whole process, which thoroughly verifies 
the stability and accuracy of its prediction. 

When the training data set accounts for 20%, the 
LSTM method can predict the details of partial 
degradation of the fuel cell and performs well in the 
training phase. RMSE, MAPE, and R2 are 0.0032, 0.0760, 
and 0.9674, respectively. Fig.7(a) shows that the 
prediction effect of LSTM in the verification phase is 
could be better, and there is an over-fitting situation. 
RMSE and MAPE are 0.0108 and 0.2869, respectively. 
The prediction error increases significantly with the 
increase in prediction time. The data fitting degree of 
GRU during training is poor; R2 is 0.8060, while the 
RMSE, MAPE and, R2 of GRU in the verification stage 
are 0.0078, 0.1889 and 0.9284, respectively, which are 
better than LSTM, indicating that the model has better 
long-term prediction characteristics. The DA-GRU model 
has the best accuracy in the training stage, and its RMSE, 
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MAPE, and R2 are 0.0013, 0.0338, and 0.9944, 
respectively. However, the prediction accuracy in the 
prediction verification stage is much lower than that in the 
training stage, indicating that there is still a specific 
over-fitting situation.  

In the whole life cycle of PEMFC, only the CKDG 
fusion prediction method can accurately fit the measured 
data. The RMSE and MAPE in the verification stage of 
the fusion method are optimal, which are 0.0051 and 

0.1083, respectively, and the R2 is 0.9792. The accuracy  
is the highest, and the degree of fitting is good. It is worth 
mentioning that CKDG only uses 20% of the training data 
to obtain an accurate prediction effect similar to that of 
other studies under 40% of the training data. In order to 
compare the prediction accuracy of the four methods 
more intuitively, the data histograms of RMSE and 
MAPE are shown in Fig.8. It can be seen that the fusion 
model has better prediction accuracy at any stage. 

 

 
 

Fig.7 Short-term degradation prediction results of the four methods. (a) 20 % Training Set Training Phase;  
(b) 30 % Training Set Training Phase; (c) 40 % Training Set Training Phase; (d) 50 % Training Set Training Phase 

 
Table 4 Comparison of prediction results of four methods under 20 % training set of FC1 

 Training phase Testing phase 
 LSTM GRU DA-GRU CKDG LSTM GRU DA-GRU CKDG 

RMSE 0.0032 0.0078 0.0013 0.0026 0.0108 0.0078 0.0061 0.0051 
MAPE 0.0760 0.1936 0.0338 0.0681 0.2869 0.1889 0.1245 0.1083 
MAE 0.0025 0.0065 0.0011 0.0022 0.0092 0.0061 0.0040 0.0035 

R2 0.9674 0.8060 0.9944 0.9774 0.8537 0.9242 0.9539 0.9792 
 

 
 

Fig.8 RMSE and MAPE results with four methods 
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3.3 Case Ⅲ: FC2 Prediction Results 
In order to further verify the generalization ability of 

the fusion model, based on the FC2 data set processed by 
CEEMDAN-KPCA, the degradation voltage data under 
dynamic operation are verified under different training set 
proportions. The error summary of the fusion model is  

shown in Table 5. The prediction results of the CKDG 
fusion prediction method in different training stages are 
shown in Fig.9. It can be seen that the results of CKDG fit 
the measured data and the data under the proportion of the 
first 20% training set. 

The RMSE of the fusion model under the FC2 data 
set is 0.0039, which is 23.5% lower than that of FC1, and 

 
Table 5 The results of prediction of CKDG method for FC2 

Training phase 20% 30% 40% 50% 

RMSE 0.0039 0.0034 0.0028 0.0019 

MAPE 0.0928 0.0852 0.0828 0.0463 

MAE 0.0030 0.0027 0.0026 0.0015 

R2 0.9809 0.9832 0.9883 0.9951 

 

 
 

Fig.9 Short-term degradation prediction results of CKDG method for FC2. (a)20% Training Phase;  
(b) 30% Training Phase; (c) 40% Training Phase; (d) 50% Training Phase 

 
the MAPE is 0.0928, which is 14.3% lower than that of 
FC1. The R2 is approximate, the fitting degree is good, 
and the prediction accuracy is higher than that of FC1. 
This can be explained by the fact that the variable load 
data of fuel cells under dynamic load have a significant 
degradation trend in the early stage, and CKDG can 
accurately extract these unexplained features. With the 
increase of training data, the fusion model still maintains a 
high prediction effect, which proves that the fusion model 
still has accurate and stable short-term prediction ability 
under different working conditions. In addition, we can 
observe that the voltage spikes marked by red boxes in 
Fig.2 may reduce the model's prediction accuracy when 

using the normalization method for the original data 
because large data fluctuations will impact model 
learning. 

4 Conclusion 
This paper proposes a CKDG fusion prediction 

method combining CEEMDAN, KPCA data processing 
algorithm, and DA-GRU. The Gaussian weighted moving 
average filter is used to smooth the output voltage, 
effectively remove the noise, and maintain the original trend. 
CEEMDAN processes the feature data combined with the 
KPCA algorithm, extracting the high-contribution feature 
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data component. The DA-GRU network is used to achieve 
accurate voltage decay prediction. Based on the actual fuel 
cell aging experimental data set, the effectiveness of the 
proposed method is verified. The results show that the 
proposed CKDG method has a better prediction effect than 
other data-driven methods. Under training the first 20% of 
the data, the RMSE, MAE, and R2 of the CKDG method 
are 0.0051, 0.1083 and 0.9792, respectively, and a good 
prediction effect can be obtained. In addition, the 
universality of the method is verified based on the dynamic 
condition data set, which can effectively help study the 
battery's remaining life. Although the effectiveness of this 
method has been proved, the amount of aging test data of 
PEMFC under start-stop, idle speed, and significant load 
changes is still tiny, and the universal performance of the 
prediction algorithm is still the focus of future research. 
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