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Abstract:  Reconfigurable  modular  robots  feature  high  mobility  due  to  their  unconstrained 

connection  manners.  Inspired  by  the  snake  multi‐joint  crawling  principle,  a  chain‐type 

reconfigurable  modular  robot  (CRMR)  is  designed,  which  could  reassemble  into  various 

configurations  through  the  compound  joint  motion.  Moreover,  an  illumination  adaptive 

modular  robot  identification  (IAMRI)  algorithm  is proposed  for CRMR. At  first,  an  adaptive 

threshold  is  applied  to detect oriented FAST  features  in  the  robot  image. Then,  the  effective 

detection  of  features  in  non‐uniform  illumination  areas  is  achieved  through  an  optimized 

quadtree  decomposition  method.  After  matching  features,  an  improved  random  sample 

consensus  algorithm  is  employed  to  eliminate  the  mismatched  features.  Finally,  the 

reconfigurable  robot module  is  identified  effectively  through  the perspective  transformation. 

Compared  with  ORB,  MA,  Y‐ORB,  and  S‐ORB  algorithms,  the  IAMRI  algorithm  has  an 

improvement of over 11.6%  in  feature uniformity, and 13.7%  in  the comprehensive  indicator, 

respectively.  The  IAMRI  algorithm  limits  the  relative  error  within  2.5  pixels,  efficiently 

completing the CRMR identification under complex environmental changes. 
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0 Introduction 
With the improvement of reconfigurable robots and 

identification algorithms, self-reconfiguration of mobile 
robots has an increasingly broad prospect in the fields of 
anti-terrorism, disaster relief, and exploration[1]. 
Reconfigurable robots could be applied in some harsh 
circumstances, thus guaranteeing people’s working 
environment and life safety. A self-reconfiguration robot 
has many identical modules, and the robot deforms to 
different configurations to confront practical needs[2]. 
Among them, caterpillar self-reconfiguration robots have a 
good ability to overcome obstacles and ground adaptability, 
which provides aresearch hotspot in this field. 

Since Fukuda et al. proposed the first reconfigurable 
mobile cell structured robot[3], reconfigurable technology 
has undergone rapid development. A Swarm-bot[4] with a 
wheel track was introduced, which had lightweight 
modules. Although the Swarm-bot is tight and flexible, its 
obstacle-traversing ability is poor. After that, Inoue et al. 
proposed a remotely operated vehicle[5], which had a well 
underwater operation ability. JL-2 tracked robot[6, 7] is a 
dual-track module robot with a robust locking mechanism. 
Liu et al. designed an AMOEBA-I robot[8] with 
three-track modules, which was well applied in the life 
rescue of the Ya’an earthquake[9]. Even though the above 
robots have great feasibility, most of their single-track 
module is unable to move or communicate independently, 
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thus limiting their flexibility and application scenarios. 
The identification of modular reconfigurable robots 

is the key to achieving self-reconfigurable functions. The 
mainstream methods of target identification and 
positioning that have been implemented can be classified 
based on the sensors used: ultrasonic or infrared 
positioning, LiDAR distance positioning, and camera 
vision positioning. Yim et al. developed PolyBot 
equipped with infrared sensors[10]. To adjust the relative 
positions between modules, the offset information is 
calculated continuously by the centering method. 
CONRO[11] docked by mountain climbing algorithm, but 
required two docking surfaces within its infrared sensing 
range. The JL-2 tracked robot[6,7] measured the geometric 
distance through ultrasonic sensors to obtain the offset 
information between modules for docking. These 
reconfiguration schemes mostly utilized infrared and 
ultrasonic for docking, andtheir accuracy is not 
satisfactory[12]. 

LiDAR could be used for indoor target localization 
and map modeling. Liu et al.[13] employed optimized 
HDBSCAN to detect and trace human legs. Through the 
clustering of the leg model, the obstacle interference 
is effectively eliminated. Yao et al.[14] utilized 
two-dimensional LiDAR and DW-SVDD to detect leg 
targets. The dynamic leg data could be obtained even with 
obstacles and partial occlusion. 

The most extensive technical route in the field of 
robot positioning is currently the use of cameras to detect 
contours or colors to trace targets[15]. Vision-based object 
detection typically performs feature extraction and 
classification in each frame to determine the target 
position[16]. Robots such as M-TRAN[17] and CKbot[18] 
docking through cameras,but their docking surfaces 
require mutual induction, which limits the docking range. 
Yi et al.[19] proposed a method called Patch SVDD for 
image anomaly detection and segmentation. The 
algorithm checks the image at the patch level and is able 
to locate defects. Oriented FAST and Rotated Brief 
(ORB)[20] is an efficient feature detection algorithm, 
which is widely applied in target detection and 
identification. However, the feature points detected by 
ORB are unevenly distributed and excessively clustered 
under non-uniform illumination, which affects the 
subsequent positioning accuracy of reconfigurable 
modular robots. The three-generation evolutionary 
algorithms of ORB-SLAM improved the accuracy of 
mapping and localization[21-23]. Mur-Arta et al.[22] 
proposed to utilize quadtree in the ORB-SLAM2 
algorithm, which enhanced the uniformity of feature 
distribution, with low real-time performance. By 
improving Mur-Arta's method, Yu et al.[24] presented a 
quadtree ORB algorithm that effectively eliminates 
redundant features. Sun et al.[25] improved feature 
uniformity by setting thresholds to limit the feature 
extraction number in each region. Fan et al.[26] utilized an 
adaptive threshold to extract features, but there still exists 
some manual parameters, thus unable to realize the 
adaptive feature extraction. 

In this work, a chain-type reconfigurable modular 
robot (CRMR) is designed. The reconstruction and 
docking approaches of CRMR are divided into two steps: 
remote guidance and near-end docking. During the 
remote guidance phase, it is necessary to use an algorithm 
to identify the CRMR modules and guide them. This 
promotes mutual visibility between the active module and 
the target module, which is conducive to the next stage of 
near-end docking. 

Therefore, an Illumination Adaptive Modular Robot 
Identification (IAMRI) algorithm is proposed to 
effectively identify the reconfigurable modular robot.The 
main difficulties and contributions of this paper are 
summarized as follows: 

1) In order to improve the accuracy of feature point 
detection, the adaptive threshold oriented FAST (oFAST) 
algorithm is used to detect feature points. 

2) To improve the uniformity of feature points, the 
optimized quadtree decomposition method is used to 
allocate feature points. 

3) To improve the accuracy of matching recognition, 
an optimized RANSAC algorithm is used to eliminate 
erroneous matches and effectively locate the robot range. 

The rest of this paper is organized as follows. Section 
2 introduces our reconfigurable modular robot platform. 
Section 3 describes the design of the IAMRI algorithm. 
Section 4 provides experimental analyses of the IAMRI 
algorithm performances. Finally, concluding remarks are 
given in Section 5. 

1 The Reconfigurable Modular 
Robot Platform 

Owing to the multi-joint crawling, snakes have 
fantastic environmental adaptability and climbing ability. 
Based on this principle, a chain-type reconfigurable 
modular robot (CRMR) is designed (Fig.1). Compared 
with traditional wheeled or legged robots, snake-like 
crawling robots with 3D motion capabilities have adaptive 
travel advantages in complex environments[27]. 
Traditionally, modules of the snake-like crawling robot are 
connected through serpentine chain joints. However, this 
scheme has geometric interference, which limits the 
motion range between adjacent modules[28]. To solve this 
issue, a reconfigurable structure with offset joints is 
adopted, which could flexibly change the configuration. 
The number of CRMR modules is selected according to 
actual requirements, such as climbing, obstacle crossing, 
and so forth. Encouragingly, the deformable configurations 
increase exponentially with modules, which enriches the 
application scenario of CRMR. 

 

 
 

Fig.1 Modular robot with a snake-like structure 
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Concretely, a CRMR module is composed of a pole 
drive system, a caterpillar drive system, a pitch arm drive 
system, and an offset yaw arm drive system (Fig.2). A 
CRMR module weighing 8kg is driven by four DC motors, 
with a length of 425mm and a width of 270mm. 
Meanwhile, ZigBee communicates information between a 
computer and modules, allowing the individual module to 
operate independently (Fig.3). It is worth noting that two 
CRMR modules are defined as one active module. The 
active module interconnects freely with other modules to 
realize reconfiguration. 

  

 
 

Fig.2 The structure of a CRMR module 
 

 
 

Fig.3 The CRMR unit module platform 
 

2 Design of the IAMRI Algorithm 
Non-uniform lighting often occurs indoors or 

outdoors, which affects the feature detection in visual 
missions. In this case, feature points collected by the 
traditional ORB algorithm are uneven and clustered, 
which is not conducive to the subsequent feature 
matching[20]. To this end, an Illumination Adaptive 
Modular Robot Identification (IAMRI) algorithm is 
proposed. Fig.4 shows the flowchart of the IAMRI 
algorithm. The IAMRI uses a revised ORB algorithm to 
detect features of the collected image, and Quadtree is 
applied to distribute the feature points uniformly, even 
with uneven illumination. 

2.1 Feature Detection with Adaptive Threshold 
Based on the principle of human visual perception, a 

K-layer image pyramid is constructed to maintain feature 
scale invariance. An image scaling factor T is set, and K-1 
down-sampling is performed on the original Gaussian 
blurred image O1. Therefore, the image Ok after 

down-sampling is represented as:  
 1 /kO O T k    (1) 

where {1,  2,  ,  }k K  , and K is calculated from the 
original image size and camera speed: 

 2[log (min( ,  ))] [ / ] 3K M N f     (2) 
where M and N are original image rows and columns, 
respectively, f is the camera frame rate, and μ is the scale 
factor, which is set to 12. 

 

 
 

Fig.4 The route of the IAMRI algorithm 
 
At the same time, the imagepyramid is gridded. 

Following the neighborhood detection rule of oFAST[20], 
each pyramid layer is evenly divided into grid regions of 
size 30×30. Areas that are not evenly divided by grid cells 
are subsumed into adjacent grids. 

The ORB algorithm uses threshold t to extract 
oFAST features with different grayscales. However, 
under uneven illumination, image noise and contrast are 
variable in different areas, which means that the threshold 
t ought to be different. To this end, an adaptive threshold 
Ta is proposed for the oFAST feature detection: 
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where ( )iI x is the ith pixel grayscale, ( )I x is the grayscale 
average in the grid region, and n is the pixel number in the 
grid region. 

To facilitate the understanding of feature detection, 
the oFAST feature detection schematic is shown in Fig.5. 
The adaptive threshold Ta is utilized to extract 
pixel-specific features in each pyramid grid region. In 
detail, the pixel P grayscale is set to Ip. Sixteen pixels are 
taken clockwise from a circle of radius three centered at P. 
If 12 consecutive pixel grayscale is greater than Ip + Ta or 
less than Ip – Ta, then pixel P is recorded as a feature. 
Meanwhile, the gray centroid C of the region around the 
feature P is obtained using the gray centroid method[20]. 
Vector PC is used to add directional properties to features. 
After the above steps, if there is not enough feature 
collection in the grid area, Ta is adjusted to Ta / 2, and 
features are extracted again. 

 

 
 

Fig.5 oFAST feature detection schematic 
 

2.2 Feature Uniform Distribution 
To handle the clustering and redundancy of detected 

features, the features are screened by an optimized 
quadtree algorithm. First, the maximum decomposition 
depth D of the quadtree is set to avoid excessive 
uniformity caused by too many iterations[29]. Each layer 
of the pyramid image is initially treated as a parent node. 
If there is more than one feature point in a node, the node 
needs to be divided into four nodes uniformly, until 
reaching the maximum depth D (Fig.6). Subsequently, the 
feature with the maximum Harris response is reserved in 
each node[30]. 

Image enhancement is carried out in areas with less 
feature detection. At the beginning, we calculate the 
brightness of the nodes that stop decomposing before 
reaching the maximum depth. Based on the pixel 
selection modes in Fig.7, the average brightness Avg of a 
node is calculated: 

 
1

1 ( ,  )
m

j j j
j

Avg I x y
m 

   (4) 

where m is the selected pixel number, ( ,  )j j jI x y is the 
average brightness of the collected pixels. 

The node type is judged according to the average 
brightness: If Avg is higher than the threshold t1, the 
high-brightness node is determined, which requires a 

decrease in brightness. If Avg is below threshold t2, the 
low-brightness node is determined, which requires 
enhanced brightness. Besides, the node has normal 
brightness. Here, we set t1 to 120 and t2 to 100. 

 

 
 

Fig.6 The decomposition of quadtree 
 

 
 

Fig.7 The pixel selection modes of a node 
 

For the high-brightness node, we need to reduce 
luminance. The Gamma algorithm is usually applied to 
process partially bright images with a fixed correction 
factor γ[31]. Here, an adaptive gamma algorithm is designed 
to revise image details.The calculation is as follows: 

 ( )
max max( ) ( / ) sG s s s s    (5) 

where G(s) is the corrected image luminance, s is the 
input image luminance, smax is the maximum luminance, 
and γ(s) is the adaptive factor utilized for revision: 

 max

0
( ) 1 [ ( ) / ( )]s

s
s P s D s


     (6) 

 min max min( ) ( ( ) ) / ( )P s P s P P P     (7) 
 max

0
( ) (s)s

s
D s P

   (8) 
where P(s) is the image luminance probability density 
function, Pmin and Pmax are the maximum and minimum P(s), 
respectively. Among them, P(s) is expressed as follows: 

 ( ) /sP s n E    (9) 
where ns is the pixelnumber with luminance s, and E is the 
image’s total pixel number. 

For the low-brightness nodes, we need to strengthen 
their luminance. Contrast Limited Adaptive Histogram 
Equalization (CLAHE) algorithm is utilized for the 
enhancement[32]. Generally, CLAHE enhances contrast 
and suppresses local noise. 

After image enhancement, these nodes undergo 
adaptive oFAST feature extraction and quadtree decomposition 
again. When the number of collected features reaches the 
expected number, the search and distribution of features 
are stopped. 

2.3 Mismatch Elimination and Module 
Identification 

After the search and allocation of features, the binary 
rBRIEF[20] feature descriptors are calculated. The 
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descriptors are compared with those detected in the robot 
sample. If the Hamming distance of the descriptor is less 
than twice the minimum matching distance, the pair of 
features is judged to be a correct match. 

Then, the optimized random sample consensus 
(RANSAC) algorithm[33] is used to delete incorrect 
matches. Here, valid mathematical models are iterated 
over datasets containing anomalous data to eliminate 
outliers. The maximum number of iterations is set to 10. 
Based on the clustering and high matching characteristics 
of the features in the texture region, the direction filtering 
of the clustering points and the homography matrix 
filtering of the outliers are carried out. 

The feature set F with close distance and small angle 
change of matching pair is counted. The transformation  

between the matching point pair (x, y) and (x’, y’) in the 
set F is shown in equation 10. The H in the formula is 
used to select other features to retain the correctly 
matched features. 

 
11 12 13

21 22 23

31 32 33

'
'

1 1 1

x x h h h x
y H y h h h y

h h h

       
               
              

  (10) 

Where, σ is a proportion factor, and h33=1 is utilized 
to normalize H. 

After eliminating mismatches, a perspective 
transformation of the robot sample image is carried out 
through H. The contour range of the robot is selected by a 
frame, and the center (xb, yb) of the contour is calculated 
as equations 11 and 12[34]: 

3 3 3 32 2 2 2
1 4 1 1 1 4 1 1 4 1 1 1 4 1 41 1 1 1

3 3
1 4 1 1 1 41 1

3( )
i i i i i i i i i ii i i i

b
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  
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  
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  (11) 
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  (12) 

3 Experimental Analyses of IAMRI 
Algorithm Performances 

The binocular camera RealSense T265 is exploited 
to search the CRMR module. Table 1 shows the 
specifications of CRMR and camera. Experiments on 
feature uniformity and matching performance are 
conducted. The test images are derived from three 
self-made CRMR datasets, which involve different 
illumination changes, scale changes, and blur changes, 
and we name them Light, Scale, and Bulr, respectively. 

 
Table 1  Specifications of the camera and CRMR 

Specification Description 
Computer configuration Intel i7-10750H (2.60GHz) 

Operating system Ubuntu16.04 
Camera image size 848 pixels * 800 pixels 
Camera frequency 30 Hz 

Image format .jpg 
CRMR size 425mm*270mm*137mm 

CRMR weight 8 Kg 
 

3.1 Experiments on the Feature Uniformity 
Based on the paper[35], there are five methods to 

divide an image into different areas, including vertical and 
horizontal directions. The number of features in each area 
is computed to form a regional statistical distribution 
vector. The variance V of the vector group is calculated 
and the uniformity u is as follows: 

 101log( )u V   (13) 
Here, the smaller the u, the higher the feature uniformity. 
Meanwhile, the accuracy, precision, recall, and 

F1-score metrics[36,37] of feature detection are represented 
as follows: 

 TP TNaccuracy
TP FN FP TN




  
  (14) 

 TPprecision
TP FP




  (15) 

 TPrecall
TP FN




  (16) 

 21 precision recallF score
precision recall

 
 


  (17) 

where TP is the number of correctly detecting features, 
FP is the number of incorrectly detecting features, TN is 
the number of incorrectly excluded detecting features, 
and FN is the number of correctly excluded detecting 
features. 

Three images are selected from the CRMR dataset 
with illumination variations. The ability to extract 1000 
features is compared between ORB algorithm[20], 
Mur-Artal’s algorithm (MA)[22], Yu’s improved ORB 
algorithm (Y-ORB)[24], Sun’s improved ORB algorithm 
(S-ORB)[25], and the IAMRI algorithm. 

Fig.8 shows the feature extraction results. For the 
same images in the horizontal direction, features extracted 
by ORB algorithm are concentrated on the edges of the 
brick seam and the robot. The S-ORB algorithm has 
slightly improved through region partitioning. The 
features extracted by MA, Y-ORB, and the IAMRI 
algorithm are relatively uniform. In addition, for 
vertically aligned images with reduced light, the feature 
distribution of ORB and S-ORB algorithms is slightly 
reduced from the second figure. The feature positions of 
MA and Y-ORB algorithms changed greatly in the third 
figure. Although the feature distribution of the IAMRI 
algorithm is slightly reduced in the third image, this 
decrease is mostly in weak texture regions. In obvious 
texture areas, the feature reproduction and preservation 
effects are relatively good. 

The uniformity and time consumption are shown in 
Table 2. Compared with ORB algorithm, the IAMRI 
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Fig.8 Results of feature extraction 
 

Table 2 Uniformity and time consuming 

Images 
Uniformity, u Time consumption, t/ms 

ORB MA Y-ORB S-ORB IAMRI ORB MA Y-ORB S-ORB IAMRI 

1 233.49 182.91 182.68 183.52 165.33 28.79 33.52 33.41 37.75 28.34 

2 236.35 165.45 164.19 169.56 164.27 30.31 32.83 35.71 29.77 26.64 

3 230.25 220.48 220.73 208.41 166.71 29.51 33.21 31.29 27.74 26.85 

Average 233.36 189.61 189.20 187.16 165.44 29.54 33.19 33.47 31.75 27.28 

 
algorithm has a 29.1% promotion in uniformity. 
Compared to the other three algorithms, the IAMRI 
algorithm has an increase of over 11.6% in uniformity. In 
terms of time consumption, the IAMRI algorithm saves 
over 7.6% compared to the other four algorithms. 

The experiments select the representative dataset 
Light, with changes in illumination, and compare the 
feature detection precision and recall (Fig.9). In terms of 
precision, the IAMRI algorithm has 24.7%, 21.1%, 4.5%, 
and 17.4% improvement over ORB, MA, Y-ORB, and 

S-ORB algorithms, respectively. In terms of recall, the 
IAMRI algorithm has 24.2%, 18.6%, 16.3%, and 15.2% 
improvement over ORB, MA, Y-ORB, and S-ORB 
algorithms, respectively. At the same time, the feature 
detection accuracy of the Light dataset and the F1-score 
of the three datasets are calculated (Fig.10). In terms of 
accuracy, the IAMRI algorithm has 24.4%, 20.7%, 2.7%, 
and 13.8% improvement over ORB, MA, Y-ORB, and 
S-ORB algorithms, respectively. In terms of F1-score,  
the IAMRI algorithm has 20.8%, 13.4%, 7.4%, and 10.7%  

 

 
 

Fig.9 Feature detection precision and recall 
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Fig.10 Feature detection accuracy and F1-score 
 

improvement over ORB, MA, Y-ORB, and S-ORB 
algorithms, respectively. Therefore, the IAMRI algorithm 
has good stability in feature extraction, which is 
beneficial for feature matching and localization in 
complex environments. 

3.2 Experiments on the Feature Matching and 
Identification 

The matching precision P and recall rate R of five 
algorithms are compared. At the same time, the harmonic 
mean of P and R is taken as the comprehensive score F[38]: 

 / ( )T T FP P P P   (18) 
 / ( )T T FR P P N   (19) 
 (2 ) / ( )F P R P R     (20) 

where PT is the correct matching number, PF is the 
non-matching number, and NF is the excluded correct 
matching number. 

The dataset with illumination variation is utilized to 

verify the matching effect (Fig.11). Compared with the 
other four algorithms, the IAMRI algorithm effectively 
deletes false matches while maintaining matching 
uniformity. 

The F-scores of three datasets are counted. Moreover, 
the relative error between robot coordinate measurement 
and reality is calculated (Fig.12). Compared to the other 
four algorithms, the IAMRI algorithm has an 
improvement of over 13.7% in the F-score. In terms of 
time consumption, the IAMRI algorithm saves over 2.1% 
compared to the other four algorithms. The relative errors 
of ORB, MA, Y-ORB, and S-ORB algorithms are within 
66.8, 30.2, 13.5, and 59.1 pixels, respectively. 
Encouragingly, the relative error of the IAMRI algorithm 
is controlled within 2.5 pixels, which is superior to the 
other four algorithms. The IAMRI algorithm meets the 
requirement of CRMR guidance error within 5 pixels. 
Therefore, our algorithm could identify CRMR more 
accurately. 

 

 
 

Fig.11 Matching and identification of CRMR 
 

 
 

Fig.12 Evaluations of the F and the relative error 
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4 Conclusion 
In this paper, we propose an illumination adaptive 

modular robot identification algorithm for a chain-type 
reconfigurable modular robot. The adaptive threshold 
method is devised to extract features, and an optimized 
quadtree decomposition method is invented to make 
feature distribution rational. After matching features, an 
improved RANSAC algorithm is employed to eliminate 
the mismatched features. The CRMR module is detected 
effectively through the perspective transformation. 

The effectiveness of the IAMRI algorithm is verified 
through feature uniformity and matching experiments. In 
terms of feature extraction, the distribution of features is 
optimized through an improved quadtree decomposition 
method. Compared with ORB, MA, Y-ORB, and S-ORB 
algorithms, the IAMRI algorithm has an improvement of 
over 11.6% in feature distribution uniformity. Compared 
to the other four algorithms, the IAMRI algorithm saves 
over 7.6% in algorithm time. In terms of feature matching, 
the optimized RANSAC algorithm is utilized to eliminate 
mismatches. Compared to the other four algorithms, the 
IAMRI algorithm has an improvement of over 13.7% in 
the F-score. The relative error of the IAMRI algorithm is 
controlled within 2.5 pixels, which is superior to the other 
four algorithms.Therefore, the algorithm could identify 
CRMR more accurately. In the future, we will apply our 
scheme in practice and conduct more research on the 
reconstruction of modular robots. 
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