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0 Introduction 
Since the middle and late last century, digital 

technology has been developing rapidly, and the related 
techniques and algorithms in the field of signal processing 
have become a hot research orientation. Adaptive filters 
are popular because no prior knowledge of the signal is 
required[1]. A series of adaptive filtering algorithms based 
on the fundamental principles of the adaptive filter have 
been proposed by researchers. One of the most 
well-known adaptive filtering algorithms is the least mean 
square (LMS) algorithm, which was first proposed by 
Windrow and Hoff. The LMS algorithm has been 
extensively researched and implemented due to its low 
computational complexity and robust stability in Gaussian 
noise environments. Since the rate of convergence of the 
LMS algorithm is highly uncertain for the energy 
magnitude of the input signal, a normalized least mean 
square (NLMS) algorithm was further proposed[2], in 
which the normalized term of the input vector is used to 
normalize the adjustment of the filter weight vector. The 
NLMS algorithm can be viewed as possessing an 
adjustable step size that varies with input signal changes, so 
it has a faster convergence rate than the LMS algorithm. 

In echo cancellation, noise control, channel 

equalization, and other applications, nonlinear problems 
are inevitably encountered, and linear adaptive filters 
have limited ability to model nonlinear systems, so 
Volterra adaptive filter (VAF)[3], Kernel adaptive filter 
(KAF)[4], function link adaptive filter (FLAF)[5], spline 
adaptive filter (SAF)[6,7] and other nonlinear adaptive 
filters are beginning to be widely used. Compared to linear 
filters, nonlinear filters are more complex, so a balance 
between convergence performance and complexity needs 
to be sought in practical applications. The SAF is 
popular due to its flexibility and low computational 
complexity. Depending on the cascading order, the SAF 
can be categorized into Wiener-type spline adaptive 
filters (WSAF) and Hammerstein-type spline adaptive 
filters (HSAF). The WSAF is a typical linear-nonlinear 
model that cascades a nonlinear network after a linear 
network. Meanwhile, the HSAF is a nonlinear-linear 
model that cascades a linear network after a nonlinear 
network. In nonlinear system identification, the HSAF 
can effectively model Hammerstein-type nonlinear 
systems, but its performance deteriorates sharply when 
confronted with Wiener-type nonlinear system. Similarly, 
the WSAF performs to the HSAF. In general, we cannot 
know the a priori information of unknown nonlinear 
systems. To solve this problem, Ref. [8] proposes a 
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convex combination spline adaptive filter by convexly 
combining different types of spline adaptive filters to 
maintain the convergence performance in the face of 
different types of nonlinear systems. 

In practical application environments, adaptive 
filters will inevitably interfere with non-Gaussian noises. 
Anti-non-gaussian noise interference algorithms have 
been introduced into the spline adaptive filter to improve 
the robustness of nonlinear filters. A spline adaptive filter 
using maximum correlation-entropy criterion (SAF-MCC) 
is proposed to enhance the robustness of the WSAF, see 
Ref. [9]. Also, a nonlinear spline adaptive filter based on 
the robust Geman-McClure estimator (SAF-RGM) 
proposed in Ref. [10]. In addition, some momentum 
gradient-like spline adaptive filters[11,12] and spline- 
priority-optimized adaptive filters[13,14] have been 
developed to improve the convergence performance of 
spline adaptive filters. 

Motivated by the excellent performance of the 
exponential hyperbolic sine (EHS) algorithm[15] in linear 
systems, a convex combination exponential hyperbolic 
sine spline adaptive filter (CSAF-EHS) is presented in 
this paper, which convexly combines an exponential 
hyperbolic sine Hammerstein-type spline adaptive filter 
(HSAF-EHS) and an exponential hyperbolic sine 
Wiener-type spline adaptive filter (WSAF-EHS) to 
maintain convergence performance in the presence of 
non-Gaussian noise when dealing with Hammerstein- 
type nonlinear systems or Wiener-type nonlinear systems 
and to achieve robustness. The main contributions of this 
paper are as follows: 

(i) The exponential hyperbolic sine algorithm is 
used to propose a convex combination exponential 
hyperbolic sine spline adaptive filter. 

(ii) To ensure the robust convergence of the 
algorithm, the convergence analysis of the proposed 
algorithm is performed. 

(iii) Simulation experiments are conducted to verify 
the feasibility, correctness, and effectiveness of the 
proposed algorithm. 

1 Review of the HSAF and WSAF 
1.1 The HSAF 

The basic structure of the HSAF[6] is shown in Fig.1. 
It consists of a nonlinear network and a linear adaptive 
filter, where the nonlinear network is composed of an 
adaptive lookup table (LUT) and a spline interpolation 
function, see Fig.2. The output of the nonlinear network 
and the whole system are represented by s(n) and y(n), 
respectively. s(n) can be represented by a polynomial 
function φ(·) containing x(n), while φ(·) contains the 
local parameter u and the interval index i, which can be 
denoted respectively as: 
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Fig.1 Basic structure of the HSAF 
 

 
 

Fig.2 Spline interpolation process 

 
where Δx is the uniform sampling interval between 
neighboring control points in the LUT, Q is the number 
of the control points and [·] is a floor operation. In the 
HSAF, the output of the nonlinear network can be 
denoted as: 

 ,( ) ( ) T
n i ns n nϕ= = u Cq        (3) 

where 3 2 1[ , , ,1]T
n n n nu u u=u , qi,n=[qi, qi+1, qi+2, qi+3]T is a 

vector of control points consisting of four neighboring 
control points, and C is a matrix of order 4, which is 
usually used to find the optimal approximation by using 
the CR spline basis matrix, which is: 
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Then, the output of the HSAF can be denoted as: 
 ( ) T

n ny n = w s  (5) 
where wn=[w0(n), w1(n), …, wM–1(n)]T, and sn=[s(n), 

s(n–1), …, s(n–M+1)]T is the input vector. Then the 
learning rule for linear filters and control point vectors 
can be represented as: 

 1 ( )n n w ne nμ+ = +w w s             (6) 

 , 1 , ,( ) T
i n i n q i n ne n+ = +q q C U wμ        (7) 
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Where Ui,n=[ui,n, ui,n–1,…,ui,n–M+1], and Ui,n comes 
from the equation , ,

T T
n i n i n∂ ∂ =s q C U . If considered in 

the same span i or overlapping spans of the current input 
x(n), there is ui,n–k=un–k(k=0,1,2…,M-1), otherwise it is 
considered as a zero vector. 

1.2 The WSAF 
The basic structure of the WSAF[7] is shown in Fig.3. 

The input signal xn=[x(n), x(n–1), x(n–M+1)]T passes 
through an input linear network to obtain the output as: 

 ( ) T
n ns n = w x  (8) 

 

 
 

Fig.3 Basic structure of the WSAF 
 

Spline interpolation similar to the principle of Fig. 2, 
and then we can get u and i: 

 ( ) ( )s n s nu
x x

 = −  Δ Δ 
  (9) 

 ( ) 1
2

s n Qi
x

− = + Δ 
 (10) 

The output of the WSAF can be represented as: 
 ,( ) T

n i ny n = u Cq  (11) 
Subtracting y(n) from the desired signal d(n) yields 

the error signal: 
 e(n)=d(n)–y(n) (12) 
Then the learning rule of the linear filter weight 

vector and control point vector are respectively denoted as: 
 1 ,μ ( ) /T

n n w n i n ne n x+ = + Δw w u Cq x  (13) 
 qi,n+1=qi,n+μqe(n)CTun           (14) 

where T
nu  comes from the derivation of un with respect to un. 

2 The proposed HSAF-EHS and 
WSAF-EHS 

Denote the parameters of the HSAF-EHS and 
WSAF-EHS by Uj,i,n, uj,n, si,n, wj,n, qj,i,n, λj, ej(n), yj(n) 
respectively, where j is the index of the two algorithms. 
Cost functions for the HSAF-EHS and WSAF-EHS are 
respectively defined as: 

 J(w1,n, q1,i,n)=1–E[exp[–sinh2(λ1e1(n))]] (15) 
 J(w2,n, q2,i,n)=1–E[exp[–sinh2(λ2e2(n))]]  (16) 
Where λ1 and λ2 are the scale factors of HSAF-EHS 

and WSAF-EHS, respectively, and : 
 e1(n)=d(n)–y1(n)               (17) 

 e2(n)=d(n)–y2(n)               (18) 
Further, the partial derivative of J(w1,n, q1,i,n) and 

J(w2,n, q2,i,n) to w1,n and w2,n respectively can get the 
updated gradient of the weight vector as: 
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Where 
 e1,d(n)=exp[–sinh2(λ1e1(n))]sinh2(λ1e1(n))   (21) 
 e2,d(n)=exp[–sinh2(λ2e2(n))]sinh2(λ2e2(n))  (22) 
Using stochastic negative gradient descent, the 

learning rule for the weight vector of the HSAF-EHS and 
WSAF-EHS can be derived respectively: 
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where μ1,w is the learning rate for w1,n, μ2,w is the 
learning rate for w2,n. Similarly, 

1, ,i n
∇q and 

2, ,i n
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obtained as: 
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Then, the updating iteration of the control point 
vectors q1,i,n and q2,i,n can be denoted respectively as: 
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3 The CSAF-EHS 
The convex combination of two filters with 

different characteristics is a popular solution in the 
application of adaptive filters. Convex combining filters 
have a convex combining factor that is adaptively adjusted 
to the error signal and can combine the advantages of the 
two sub-filters to achieve better performance than either 
of the two separate sub-filters. To maintain the 
convergence performance in both the Hammerstein-type 
nonlinear system and the Wiener-type nonlinear system, 
the CSAF-EHS using HSAF-EHS and WSAF-EHS are 
presented in Fig.4. Then the whole output is given by: 

 1 2( )( ) ( ) ( ( )1 ( ))y n n y n yn nσ σ= + −  (29) 
 

 
 

Fig.4 Basic structure of the CSAF-EHS 
 

When the identified system is a Hammerstein-type 
nonlinear system, σ(n) will tend to 0. When the identified 
system is a Wiener-type nonlinear system, σ(n) will tend 
to 1. The two filters can work together when σ(n)∈(0, 1) . 
Therefore, the CSAF will behave well in both of the 
above nonlinear systems. To satisfy the condition 0≤σ(n) 
≤1, σ(n) is taken as a sigmoid function[16]: 

 ( )
1( )

1 a nn
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 (30) 

The mixing factor σ(n) is updated by the auxiliary 
parameter a(n). To robustly obtain an updated 
expression for a(n), a cost function considering the 
over error signal e(n) is defined using the EHS 
algorithm as follows: 

 J(n)=1–E[exp[–sinh2-(λαe(n))]] (31) 
Take the derivative of J(n) for e(n), we can get: 
 eα(n)=exp[–sinh2(λαe(n))]sinh(λαe(n)) (32) 
To get the update gradient, take the partial derivative 

of J(n) to a(n) and we have: 
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Using the stochastic gradient descent method, the 
updated iteration of a(n) can be obtained as: 
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where μα is the iteration step size, r(n)[17] is defined as: 
 2( ) ( 1) ( (1 ) )NLr n r n y nβ β= − + −     (35) 
And the constant β is a smoothing factor. To avoid 

slowing down the update rate of the auxiliary parameter, 
the value of a(n) needs to be restricted to the interval [–4, 
+4] [18].   

4 Convergence analysis 
The convergence analysis of the algorithm is carried 

out to ensure the stability of the proposed algorithm. The 
Taylor series expansions of e1(n) and e2(n) with respect to 
w1, n and w2, n are respectively as follows: 
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where h.o.t denotes the higher-order term of the 
Taylor series expansion. Combining equations (17), (18), 
(23), and (24), the following formula can be obtained: 

 
2

1, 1,
1 1, 1

1

( )
( 1) ( )

(
1

)
n d

w
e

e e
e

n
n n

n
μ

 
 = −
 


+


s
    (38) 

2
2, 2, ,

2
2,

2 2, 2
2

/ )

1

(

( )
( 1) ( )

( )

T
n i n

n d
w

x

e
e e

n
n n

ne

 Δ
 
 

= − 
 
 
  

+

Cq

x

u

μ   (39) 

The convergence of the algorithms can be satisfied 
when |e1(n+1)|≤|e1(n)| and |e2(n+1)|≤|e2(n)|. Thus, the 
convergence range of μ1, w and μ2, w is respectively given by: 
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To get the range that μ1,q and μ2,q when the two 
algorithms converge, the Taylor series expansions of e1(n) 
and e2(n) to q1,i,n and q2,i,n are as follows: 
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And combining equations (17), (18), (27) and (28), 
we can get: 
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Similarly, the range of μ1,q and μ2,q to satisfy the 
convergence condition is: 
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To ensure the proper functioning of the convex 
combination algorithm, it is also necessary to obtain a 
range of step sizes for μα. Thus, define a Taylor series 
expansion of the total error vector e(n) to a(n) as: 
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Substituting Eqs. (10) and (23) into (34), we have: 
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The condition that needs to be satisfied to maintain a 
stable update of a(n) is: 
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Thus, the range of μα is given by: 
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5 Experiments 
The simulation experiment is carried out in 

MATLAB software. The nonlinear system to be identified 
is a classical Hammerstein system[6] or a Wiener system, 
where the Hammerstein system contains an unknown 
vector w1*=[0.6, –0.4, 0.25, –0.15, 0.1, –0.05, 0.001]T 
with length 7, and the lookup table vector q1*={–2.2, 
2.0, …, –0.8, –0.91, –0.40, –0.20, –0.05, 0.0, –0.40, 0.58, 
1.0, 1.0, 1.2, …, 2.0, 2.2}T with length 23. The Wiener 
system contains an unknown vector w2*=[0.3, 
–0.1,0.7,–0.15,0.1,–0.2,0.01]T [8] with length 7, and the 
lookup table vector q2*={−2.2, 2.0, …, –0.8, –0.91, 
–0.42, –0.01, –0.1, 0.1, –0.15, 0.58, 1.2, 1.0, 1.2, …, 2.0, 
2.2}T [11] with length 23. The sampling intervals for both 
unknown systems are Δx=0.2. All the control spline 
vectors in the experiment are set initially as a vector 
q(0)={–2.2, 2.0, …, 2.0, 2.2}T of length 23, and the filter 
vectors are set initially as [1, 0, 0, 0, 0, 0, 0]T. The 
experiment is performed by adding the output of the 

unknown system with an SNR=30 dB of zero-mean 
Gaussian white noise and the α-stable distribution noise 
signal. The α-stable distribution noise is a typical 
non-Gaussian noise[19], which is characterized by 
parameters(α, β, γ, δ), The character index α∈(0, 2], the 
larger its value, the shorter the algebraic tail of the 
corresponding distribution, and the weaker the pulse 
characteristics. When α=2, α-stable distribution noise 
becomes Gaussian distribution noise. β∈[–1, 1] is a 
symmetry parameter, γ>0 is a dispersion parameter, and 
δ∈R is a location parameter. The experimental input 

signals are 2( ) ( 1) 1 ( )x n x n a nθ θ= − + − , where θ=0.1, 
a(n) is a zero-mean, unit-variance Gaussian white noise 
signal. All results are averaged over 100 independent 
experiments. Mean square error (MSE) is used to evaluate 
the performance of the algorithm in the experiment, 
where the MSE is denoted as: 

 MSE=10log10(E[e2(n)])  (52) 

5.1 The impact of different l values on algorithms 
Fig.5 and Fig.6 respectively show the effects of 

different scale factors on HSAF-EHS and WSAF-EHS. 
In the experiment, (α, β, γ, δ)=(1.6, 0, 0.05, 0). The 
experiment is set up with the other parameters of 
HSAF-EHS: M=7, μ=0.008, WSAF-EHS:M=7, μ=0.005. 
Fig.5 shows the convergence curves of the HSAF-EHS 
and WSAF-EHS algorithms for different scale factors, 
where the unknown system changes from a Hammerstein 
system to a Wiener system. In the first half of the 
iteration, the WSAF-EHS algorithm performs poorly at 
different scale factors due to the unknown system being a 
Hammerstein system, while the steady-state error of the 
HSAF-EHS algorithm does not change significantly when 
the value of the scale factor is larger, but its convergence 
speed is significantly faster. In the second half of the 
iteration, where the unknown system is a Wiener system, 
the HSAF-EHS algorithm performs poorly for different 
scale factors, and the steady state error of the WSAF-EHS 
algorithm is significantly higher when the value of the 
scale factor of the algorithm is higher, and the speed of 
its convergence is significantly faster. 

 

 
 

Fig.5 Performance of different λ1 and λ2 values when the unknown 
system changes from the Hammerstein nonlinear system to the 

Wiener nonlinear system 
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In Fig.6, the unknown system changes from a 
Wiener system to a Hammerstein system, while the two 
algorithms at different scale factors perform similarly to 
the conclusions obtained in Fig.5. 

 
 

Fig.6 Performance of different λ1 and λ2 values when the unknown 
system changes from the Wiener nonlinear system to the 

Hammerstein nonlinear system 

5.2 Performance of different algorithms 
The MSE curves for the different algorithms are 

shown in Fig.7. (α, β, γ, δ)=(1.6, 0, 0.05, 0) was set in the 
experiment, and the parameter settings for each algorithm 
are given in Table 1. Before the first 3×104 iterations, the 
system to be recognized is a nonlinear Hammerstein 
system and after 3×104 iterations, the system changes to a 
nonlinear Wiener system. In the first half of the iterations, 
the HSAF-LMS algorithm has a lower MSE curve 
compared to the WSAF-LMS and WSAF-RGM 
algorithms, but its curve has some volatility, and the steady 
state error is higher than that of the CSAF-EHS algorithm 
proposed in this paper. In the second half of the iteration, 
the WSAF-RGM and CSAF-EHS uniformly have some 
resistance to non-Gaussian noise interference, so they have 
lower MSE curves than the HSAF-LMS and WSAF-LMS. 
Taking the whole iteration together, the CSAF-EHS has 
good performance when facing both unknown nonlinear 
systems under non-Gaussian background noise. 

 
Table 1 The parameter settings for each algorithm 

Algorithms Parameters 
HSAF M=7, μ=0.003 
WSAF M=7, μ=0.005 

SAF-RGM M=7, μ=0.004, σ=0.3 

CSAF-EHS M=7, μ1=0.008, μ2=0.005, μα=0.1,  
λ1=0.3, λ2=0.3, λα=0.5, β=0.9 

 
In addition, as shown in Fig.7, during the first half 

of the convergence process, σ(n) converges towards 1, 
and the value of σ(n) produces a downward fluctuation 
because the performance advantage of HSAF-EHS at the 
early stage of convergence is not obvious or even lags 
behind that of WSAF-EHS, which makes the CSAF-EHS 
to maintain the convergence performance. In the second 
half of the iteration process, the value of σ(n) tends to be 

0. This verifies that σ(n) can adapt itself, which makes 
the CSAF-EHS continuously maintain the convergence 
performance. 

Only the non-Gaussian noise parameter was 
adjusted to (α, β, γ, δ)=(1.8, 0, 0.05, 0), and the rest of 
the parameters were consistent with those in Fig.7, and 
the experiment was conducted to obtain the results 
shown in Fig.8. Similar to the conclusion in Fig.7, the 
proposed CSAF-EHS algorithm has better performance 
throughout the iterations, and has good applicability. 

 

 
 

Fig.7 Performance of different algorithms when the unknown 
system changes from the Hammerstein nonlinear system to the 

Wiener nonlinear system under α=1.6 (a) MSE curves of different 
algorithms (b) Variation curve of the σ(n) in CSAF-EHS 

 

 
 

Fig.8 Performance of different algorithms when the unknown 
system changes from the Hammerstein nonlinear system to the 

Wiener nonlinear system under α=1.8 (a) MSE curves of different 
algorithms (b) Variation curve of the σ(n) in CSAF-EHS 
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Figs.9 and 10 show the performance of different 
algorithms in the face of an unknown system mutating 
from a Wiener system to a Hammerstein system for (α, β, 
γ, δ)=(1.6, 0, 0.05, 0) and (α, β, γ, δ)=(1.8, 0, 0.05, 0), 
respectively., and the parameters of the algorithm in the 
experiment remain the same as in Fig.7. CSAF-EHS 
always maintains its performance only before and after a 
mutation in the unknown system, having the best 
convergence performance throughout the iteration. 
Similar to Fig.7 and Fig.8, the σ(n) of CSAF-EHS in 
Fig.9 and Fig.10 undergoes an upward fluctuation at the 
beginning of the convergence, while converging to 0 and 
1 after that to maintain the convergence performance of 
WSAF-EHS, respectively. 

 

 
 

Fig.9 Performance of different algorithms when the unknown 
system changes from the Wiener nonlinear system to the 

Hammerstein nonlinear system (a) MSE curves of different 
algorithms under α=1.6 (b) Variation curve of the σ(n) in 

CSAF-EHS 
 

 
 

Fig.10 Performance of different algorithms when the unknown 
system changes from the Wiener nonlinear system to the 

Hammerstein nonlinear system under α=1.8 (a) MSE curves of 
different algorithms (b) Variation curve of the σ(n) in CSAF-EHS 

6 Conclusion 
In this paper, a convex combination of exponential 

hyperbolic sine spline adaptive filters is proposed. The 
algorithm convexly combines an exponential hyperbolic 
sinusoidal Hammerstein spline adaptive filter and an 
exponential hyperbolic sinusoidal Wiener spline adaptive 
filter, and it has a good convergence performance in 
non-Gaussian noise environments when dealing with both 
the Hammerstein-unknown system and the Wiener- 
unknown system. In addition, an algorithm convergence 
analysis is performed to ensure its normal convergence. 
The final simulation experiments demonstrate the 
effectiveness of the proposed algorithms. 
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