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Abstract: The sea surface escort formation faces various threats in reality. For example, 
suicide boats may carry explosives or other dangerous items, aiming to cause maximum 
damage by colliding or detonating escort targets. Since suicide boats have a certain degree of 
concealment, it is necessary to establish a threat assessment algorithm to timely identify and 
respond to such fast and concealed threats. This paper establishes a threat assessment model 
that considers the instantaneous and historical states of the target. The instantaneous state of 
the target takes into account six evaluation indicators, including target category, target 
distance, target heading, target speed, collision risk, and ship automatic identification system 
(AIS) recognition status; in terms of historical state information mining, a target typical 
intention recognition method based on graph neural network is proposed to achieve 
end-to-end target typical intention recognition. Furthermore, this paper introduces a 
multi-attribute decision analysis method to weight the evaluation indicators, improves the 
relative closeness calculation method between different evaluation schemes and positive and 
negative ideal schemes, and determines the target threat ranking based on relative closeness. 
Based on Unity3D, a set of unmanned boat confrontation simulation system is designed and 
developed, and typical intention recognition data sets and threat assessment scenario 
simulation data are generated through real-life confrontation. Comparative analysis shows 
that the threat assessment model in this paper can accurately and timely detect raid target 
threats and give scientific and reasonable target threat ranking results. 
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1 Introduction 
Target threat assessment means judging the threat of 

the target to our intentions and purposes, and quantifying 
and obtaining intuitive understanding. Since unidentified 
targets on the sea surface have a certain degree of 
concealment, it is necessary to establish a threat 
assessment model to timely identify and respond to such 
rapid and concealed threats. Reasonable target threat 
assessment can timely discover and respond to potential 
threats. By identifying typical intentions and ranking 
target threats on the sea surface, it can more accurately 
determine which targets or areas need more attention and 

resources, provide important decision-making basis, and 
help formulate effective defense strategies or 
countermeasures. However, target threat assessment is a 
complex process with a large number of uncertain factors. 
How to quickly and comprehensively establish a threat 
assessment index system and determine the index weight 
coefficient is the key to scientific target threat assessment. 
Different evaluation index systems and different index 
weight coefficients may result in completely different 
final evaluation results, which will directly affect the 
rationality of target threat judgment. 

Although the existing target threat assessment 
methods have achieved certain results and have been 
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successfully applied to target threat assessment, there are 
still many shortcomings, which are specifically reflected 
in the fact that the assessment process only considers the 
current instantaneous state information and ignores the 
information contained in the target's historical motion 
state[1,2]. Wang et al proposed threat assessment method 
considering instant speed, weapon, direction and type of 
targets[1]. Shu et al toke the type, weapon, speed, 
direction and distance of targets into consideration in the 
proposed threat assessment, which were also instant 
factors without historical states[2]. In the evaluation 
process, many methods only perform threat assessment 
based on the information of the target at the current 
moment, which makes the threat assessment fragmented 
and discrete, ignores the data information of multiple 
historical moments, and cannot reflect the dynamic 
changes of the target threat level in the complex and 
changeable battlefield situation. For example, as shown 
in Fig.1, consider the trajectory diagram of the 
unmanned boat escort formation and the unknown target 
under different time series. In the scene of Fig.1 (a), 
when the traditional method performs threat assessment 
on target 1 at time T1, because its direction of travel is far 
away from the unmanned boat escort formation, the 
traditional method determines that the target is of low 
threat. Considering the trajectory diagram of target 1 
from time T0 to time T1, it can be found that the target 
has an obvious typical circling tracking reconnaissance 
route. When conducting threat assessment, its threat 
value should be increased to a certain extent. In the scene 
of Fig.1 (b), both targets 2 and 3 are speedboats. 
Compared with the unmanned boat escort formation, 
their position and movement state at time T1 are 
consistent with the speed, and the movement direction is 
a mirror image of the unmanned boat escort formation. 
When the traditional method performs threat assessment 
on the two targets at time T1, it only considers the 
instantaneous state and gives the same threat level to the 
two targets. However, considering the movement 
trajectories of target 2 and target 3, the movement of 
target 2 has the phenomenon of repeated approach and 
distance, with higher uncertainty, while the movement of 
target 3 is relatively stable. Therefore, when conducting 
threat assessment on the two targets, the threat level of 
target 2 should be higher than that of target 3, and target 
2 should receive more attention. When conducting threat 
assessment on targets, traditional methods do not model 
the deep intention information in the historical motion 
state of the target, and only rely on the current motion 
state of the target for threat assessment, and the target 
information mining is not sufficient. 

In view of the shortcomings of the current target 
threat assessment methods analyzed above, this paper 
establishes a threat assessment model that considers the 
instantaneous and historical states of the target. It not 
only considers the instantaneous state factors of the 
target, but also establishes a target typical intention 
recognition model based on the historical state of the 
target. Taking the target intention recognition results into 
account, a threat affiliation function model is established 

for the evaluation index system, and the evaluation index 
is weighted based on multi-attribute decision analysis. 
Then, the relative closeness between the evaluation 
schemes of different targets and the positive and negative 
ideal schemes is calculated, and the target threat ranking 
is determined based on the relative closeness. 

 

 
 

Fig.1 Trajectory diagram of the unmanned boat escort formation 
and unknown targets under historical conditions 

 
Fig.2 is the overall framework of target threat 

assessment proposed in this paper. This paper establishes 
a threat assessment model that considers the 
instantaneous state and historical state of the target. The 
instantaneous state of the target considers six evaluation 
indicators such as target category, target distance, target 
heading, target speed, collision risk, and AIS response. In 
addition, this paper establishes a target typical intention 
recognition model based on the historical state, proposes 
a typical intention recognition method based on graph 
neural network, captures the dynamic correlation 
between the target and the escort formation, realizes 
end-to-end target typical intention recognition, and takes 
target intention as an evaluation indicator. Then, threat 
affiliation functions were established for the seven 
evaluation indicators, and the indicator values were 
normalized to [0,1]. The larger the value, the higher the 
threat level. Furthermore, the evaluation indicators were 
weighted based on multi-attribute decision analysis, and 
the relative closeness between the evaluation schemes of 
different targets and the positive and negative ideal 
schemes was calculated, and the target threat ranking 
was determined based on the relative closeness. 

2 Related Works 
In reality, the sea surface escort formation faces 

various threats. For example, suicide boats may carry 
explosives or other dangerous items, aiming to cause 
maximum damage by colliding or detonating the escort 
target. Since suicide boats have a certain degree of 
concealment, it is necessary to establish a set of threat 
assessment algorithms to timely identify and respond to 
such fast and hidden threats. In order to more 
comprehensively perceive the information of sea surface 
targets, the unmanned boat sea surface escort mission 
needs to efficiently and accurately grasp and predict the 
status of enemy sea targets and conduct threat assessment 
on sea targets. Reasonable target threat assessment can 
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timely discover and respond to potential threats. By 
conducting threat assessment and target threat ranking on 
sea surface targets, it can more accurately determine 
which targets or areas require more attention and resources, 
provide important decision-making basis, and help formulate 
effective defense strategies or countermeasures [1,3]. 
Target threat assessment refers to judging the threat of the 
target to our intentions and purposes, and quantifying and 
obtaining intuitive understanding. However, the target 
threat assessment process is relatively complex, and the 
assessment results are easily affected by many different 
factors. How to quickly and comprehensively establish a 
threat assessment index system and determine the index 
weight coefficient is the key to scientific target threat 
assessment [4]. As shown in Fig.3, threat assessment can 
usually be divided into three steps: establishing a threat 
assessment indicator system, calculating indicator weight 

coefficients, and ranking target threats [5]. This article will 
summarize the domestic and international research status 
of the above three steps respectively. 

2.1 Threat Assessment Indicator 
The first step in maritime target threat assessment is 

to establish a threat assessment index system. The 
current index system mainly focuses on instantaneous 
state factors. Chen Xingle et al. selected four types of 
target feature information, namely target distance, target 
heading, target speed and target collision risk, and 
established a threat assessment index system. However, 
the system only targets the single case of target collision 
and does not consider more complex situations[6]. Gong 
Hua proposed comprehensive method considering two 
terms of the target threat including threat degree and 
threat range[7]. Shu Jiansheng et al. took into account  

 

 
 

Fig.2 The overall threat assessment framework in this paper 
 

 
 

Fig.3 Current status of sea surface target threat assessment methods 
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the weapon configuration of the ship and proposed a 
five-index evaluation system including target type, 
weapon configuration, target distance, target entry angle 
and target speed, further optimizing the target feature 
information evaluation model[2]. The threat assessment 
index system established by Zhao et al. takes into 
account the combat capability of the incoming target, 
where the target combat capability includes target type 
and maneuverability[8]. Based on quantitative and 
qualitative analysis methods, Shi et al. selected three 
static indicators, namely target type, lethality and 
jamming capability, for qualitative analysis, and selected 
five dynamic indicators, namely target number, speed, 
altitude, range and heading angle, for quantitative 
analysis[9]. Chen Kaiyuan et al. fully considered the 
maritime combat situation and listed 14 indicators, 
namely target type, target distance, target origin and 
destination, target number, target route, target speed, 
navigation record, closest distance, coordinated action, 
radiation source signal, weapon range, friendly support, 
communication status and cargo, aiming to judge the 
threat level of the target as accurately as possible. 
However, due to the complexity of the indicator system, 
it is difficult to assign scientific and reasonable weights 
to the indicators[10]. 

2.2 Calculation of indicator weight coefficients 
After establishing the threat assessment index 

system, it is necessary to calculate the weight coefficient 
of each index to characterize the relative proportion of 
the index, so as to comprehensively evaluate the target 
threat level by combining the results of multiple 
evaluation indicators. When the threat assessment model 
and the evaluation index value are the same, but the 
weights of one or more evaluation indicators are 
different, the target threat assessment results may be 
completely different. At present, the weight coefficient 
calculation methods mainly include subjective weighting 
methods that rely on decision maker preferences and 
expert experience, objective weighting methods that rely 
on mathematical models and target attribute data, and 
combined weighting methods that integrate decision 
maker preferences and objective data. Among them, the 
analytic hierarchy process (AHP) and the year-on-year 
scoring method are typical representatives of subjective 
weighting methods, while the entropy weight method 
and the principal component analysis method are typical 
representatives of objective weighting methods. Xiao Jun 
used the analytic hierarchy process in the subjective 
weighting method to solve the weights. By making full 
use of the information of different level intervals and 
optimizing the interval weight calculation strategy, he 
obtained a more scientific and reasonable target threat 
assessment result[11]. Zhang Huan proposed examples of 
analysis of target threat assessment based on SVM[12]. 
Wang Zeyan et al. proposed an objective weighting 
method based on maximum deviation and entropy from a 
purely objective perspective, and introduced entropy to 
describe the uncertainty caused by the randomness of 

weight coefficients. Wang Changjin et al. used a 
combined weighting method based on subjective analytic 
hierarchy process and objective information entropy 
method to determine the weight coefficients of each 
indicator in the proposed threat assessment model, so 
that the final threat assessment results contain both 
subjective information and objective characteristics[13]. 
Lin et al. proposed an attribute weight coefficient 
optimization model to reduce the total deviation between 
objective preference (attribute value) and subjective 
preference value, making the decision more reasonable [14]. 
Hong et al.[15] proposed a target threat assessment model 
based on combined weights to address the problem of 
uneven distribution of indicator weights in combat threat 
assessment. The model uses analytic hierarchy process 
and key method to determine the subjective weight and 
objective weight of indicators, and uses multiplication 
synthesis method to calculate the combined weight. In 
order to solve the problems of difficulty in data analysis, 
high subjectivity, and rigid priority logic in multi-target 
threat assessment, Yu et al. proposed the PROMETHEE 
algorithm, which is based on the fusion weights of 
entropy and analytical network process (ANP) 
calculations. This algorithm fully considers the influence 
of subjective and objective factors on problem analysis 
and improves the rationality of threat assessment[16]. 

2.3 Calculation of target (absolute or relative) 
threat 

After obtaining the target threat index set and the 
weight coefficients of each index, the threat assessment 
method can be used to calculate the absolute or relative 
threat level of the target and give the target threat 
ranking results to provide a reference for the next step of 
threat target disposal, strike decision-making, etc. 
Absolute threat level refers to the threat measurement of 
the target itself. This assessment does not consider the 
existence of other targets and is a direct evaluation of the 
threat of a single target; relative threat level is when 
considering the existence of multiple targets. This 
assessment involves comparing and ranking the threats 
of each target to determine which targets should be given 
priority in the current situation. Existing threat assessment 
algorithms mainly include multi-attribute decision- 
making algorithms, Bayesian network algorithms, fuzzy 
theory algorithms, genetic algorithms, neural network 
algorithms, and grayscale correlation algorithms. José et 
al. proposed a threat assessment system based on 
information fusion from different sources. The system 
implements target threat level assessment based on 
Bayesian networks[17]. 

Ehsan et al. proposed a new threat assessment 
method based on fuzzy evidence theory. By combining 
Dempster Shafer and fuzzy set theory, the uncertainty of 
sensor and system input data is considered to achieve 
dynamic target threat assessment. This method is 
real-time and can give reasonable, effective and reliable 
target threat assessment results[18]. Niu Shaoyuan 
performed a reasonable threat assessment based on the 
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information uploaded by its own sensors, and        
toke corresponding decisions based on the threat 
assessment[19]. Wang Baihe et al. proposed an improved 
grey correlation algorithm to evaluate target threats. This 
method improved the system evaluation efficiency, but 
did not consider the uncertainty information in the 
sample data and did not unify the subjective and 
objective weighting[20]. Chen Hua et al. introduced the 
Particle Swarm Optimization-Back Propagation (PSO-BP) 
algorithm into target threat assessment, solving the 
problem of BP network falling into local minima, and 
did not consider the complex relationship between threat 
factors[21]. Zhang Feng et al. used BP neural network as a 
weak predictor and performed ensemble learning through 
Adaboost to establish a BP-Adaboost strong predictor 
target threat estimation model, solving the problem       
of difficult network structure selection and poor 
generalization ability when predicting and estimating 
with a single neural network[22]. Xi Zhifei et al. proposed 
the Grey Relational Analysis-TOPSIS (GRA- TOPSIS) 
method. By introducing GRA to reflect the internal 
change rules of each scheme, it makes up for the 
shortcomings of TOPSIS. At the same time, it uses grey 
correlation and Euclidean distance to obtain relative 
closeness, and determines the target threat ranking based 
on relative closeness[23]. Li Ye proposed a dynamic 
programming Bayesian Network (BN) structure learning 
algorithm for improving Max-Min Parents and Children 
(MMPC). This algorithm can retain the causal 
relationship between each indicator and mine more 
implicit information[24]. Liu Fang et al. proposed a fusion 
threat assessment method DBN-TOPSIS based on 
dynamic Bayesian and approximate ideal solution. This 
method solves the problems of strong subjectivity, weak 
stability and discontinuous assessment process of threat 
assessment methods, and comprehensively considers the 
target motion characteristics and target attributes[25]. 
Based on mixed situation information and taking into 
account the limited rationality of decision makers and the 
differences in individual behaviors, Zhang Kun et al. 
proposed a fuzzy dynamic interactive multi-criteria 
decision-making algorithm FD-TODIM. The algorithm 
mines state information and generates threat assessment 
results with practical significance based on the individual 
differences of different decision makers[26]. 

2.4 Intention Recognition 
There are many pattern recognition methods for 

target intention recognition, such as Bayesian networks[27,28], 
evidence reasoning[29], discriminant analysis[30], expert 
systems[31,32], decision trees (DTs)[33], D-S evidence 
theory[34], time windowing[35], and support vector 
machines (SVMs)[36]. Jin et al. used Bayesian network 
parameters based on the knowledge of military experts, 
which used the node characteristics to represent the 
transfer relationship. In this approach, the conditional 
probability represents the strength of the relationship, 
and the network parameters are updated using the 
influence of new events on backpropagation until the 

probability of an intention exceeds the threshold[37]. As 
artificial intelligence[38,39], data fusion[40,41], and deep 
learning[42-45] have developed, many intelligent intention 
recognition methods have been proposed. Zhou et al. 
combined the advantages of long short-term memory 
(LSTM) networks and DTs, to create an effective and 
feasible method for the state prediction and intention 
recognition of targets under uncertain and incomplete 
information[46]. Wei et al. proposed an intention 
recognition method based on a radial basis function neural 
network. Appropriate features are selected as the inputs of 
the neural network, which has adaptive and self-learning 
abilities for inferring the intention of the enemy[47]. 

3 Methods 
3.1 Target state modeling and threat affiliation 
function 
3.1.1 Target instantaneous state modeling and 
threat affiliation function 

The selection of instantaneous state indicators for 
sea surface target threat assessment should fully consider 
the complexity and variability of the sea surface 
environment, and strive to consider various possible 
situations from multiple perspectives. Since threat 
assessment must be a real-time processing process, and 
prior knowledge cannot reflect the dynamic changes of 
the battlefield situation, they cannot be used as a direct 
source of information for sea surface target threat 
assessment. Based on the above analysis, considering the 
complex maritime situation, this paper selects 6 
instantaneous state indicators, including target category, 
target distance, target heading, target speed, collision risk, 
and AIS response. Among them, target distance, target 
heading, and target speed are all relative values. Based on 
the theory of fuzzy mathematics, this paper constructs a 
threat affiliation function to normalize the data of 
different evaluation indicators to [0,1]. The larger the 
value, the higher the threat level. The affiliation function 
reflects the threat level under different indicators. 

(1) Target categories 
The sea surface environment is complex and 

changeable. Different types of sea surface targets have 
different functional tasks and the degree of threat to the 
escort targets also varies. The following is an analysis of 
the types of targets and their characteristics that the 
unmanned boat escort formation may encounter during 
the execution of the mission. It is worth noting that 
different types and threat affiliations can be set in 
different scenarios and flexibly adjusted according to 
actual conditions. The target categories comprehensively 
consider the types of warships and civilian ships, a total of 
9 categories, from high to low in terms of threat level: 
warships, supply ships, speedboats, tugboats, cargo ships, 
sand carriers, fishing boats, cruise ships, sailboats, etc. It 
is worth noting that the target category evaluation index 
needs to be comprehensively judged with the sixth 
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indicator of the AIS response situation in this article, and 
each indicator is not independent. 

 
Table 1 Different types of sea surface target ships and their  

threat affiliation 

Ship Type Speed range (m/s) Threat Affiliation
warship 8-16 0.9 

Supply ship 8-16 0.8 
Speedboat 5-30 0.7 
Tugboat 5-15 0.6 

Sand carrier 5-12 0.5 
Cargo ship 6-12 0.4 

Fishing boat 2-5 0.3 
Cruise boat 2-5 0.2 

Sailboat and others 1-5 0.1 
 
(2) Target distance 
Target distance is an essential factor to consider in 

threat assessment. The distance between the surface target 
and the escort target can reflect the threat level of the 
target to the escort target to a certain extent. Generally, the 
greater the target distance, the less likely it is that the 
target will be successfully attacked. The target distance is 
negatively correlated with the threat level. The greater the 
target distance, the lower the threat level, and the smaller 
the target distance, the higher the threat level. 

This paper defines the threat affiliation function of 
the distance between the sea surface target and the escort 
target as:  
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Where, d is the actual distance between the sea target 
and the escort target, dsafe is a pre-set parameter, 
indicating the safety distance. When the target distance d 
is greater than dsafe, the threat affiliation is 0; dwarning is a 
pre-set parameter, indicating the warning distance. When 
the target distance d is less than dwarning, the threat 
affiliation is 1; λ and μ are compensation coefficients. 
When the safety distance is 1000m, the warning distance 
is 400 m, the compensation coefficient λ is 3.5, and the 
compensation coefficient μ is 3, the threat affiliation 
function graph is shown in Fig.4. 

(3) Target heading 
The target heading considered in this paper is the 

relative heading of the sea surface target relative to the 
escort target. The calculation of the relative heading of the 
sea surface target is shown in Fig.5. 

v1 and v2 are the absolute velocity vectors of the 
escort target and the sea surface target (relative to the 
world reference system), respectively. Taking the escort 
target as the reference system, the velocity vector of the 
sea surface target relative to the escort target is vR, and the 

line connecting the sea surface target and the escort target 
is the straight line in the facing direction. For the 
convenience of discussion, the clockwise direction is 
positive, and the target heading angle is θ∈[–180°,180°]. 
When θ is smaller, the threat affiliation is greater; 
conversely, when θ is larger, the threat affiliation is 
smaller. 

 

 
 

Fig.4 Distance threat affiliation function graph 
 

 
 

Fig.5 Schematic diagram of target heading calculation 
 

The threat affiliation function of the target heading is 
a normal distribution: 

 
2

( ) e kθμ θ −=  (2) 
Among them, 0.001k = , the heading angle unit is 

degree. Fig.6 is a diagram of heading angle threat 
affiliation function. 

 

 
 

Fig.6 Heading angle threat affiliation function image 
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(4) Target speed 
The target speed considered in this paper is the 

relative speed of the target relative to the escort target. 
The speed of the surface target relative to the escort target 
can, to a certain extent, reflect the threat posed by the 
target to the escort target. For example, targets such as 
suicide boats usually launch rapid raids, sometimes at 
speeds of more than 30 knots, attempting to carry out 
explosive attacks on the escort target when the escort 
formation fails to take countermeasures. Pirate speedboats 
also have similar action characteristics. Generally, the 
greater the target speed, the higher the probability of a 
successful raid. The target speed is positively correlated 
with the threat level. The greater the target speed, the 
higher the threat level, and the smaller the target speed, 
the lower the threat level. It is worth noting that the target 
speed is the speed component of the relative speed of the 
surface target and the escort target projected onto the 
straight line in the opposite direction. The relative 
relationship is shown in Fig.5. The target speed reflects 
the change in the straight-line distance between the 
surface target and the escort target. The threat affiliation 
function of the target speed is defined as:  
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In the formula, vR represents the relative speed 
between the sea surface target and the escort target; vwarning 
is a pre-set parameter, which represents the warning speed. 
When the speed component of vR on the straight line 
between the sea surface target and the escort target is 
greater than vwarning, the threat affiliation is 1; when g<0, 
cosθ<0, which represents |θ| between 90° and 180°, 
indicating that the sea surface target is moving away from 
the escort target at this time, and the threat affiliation is 0. 

When the warning speed is 50m/s, is a coefficient 
greater than 1, and when ξ takes 3, the threat affiliation 
function diagram is shown in Fig.7.  

 

 
 

Fig.7 Speed threat affiliation function graph 

(5) Collision risk 
During sea navigation, some hostile targets will 

quickly approach or even collide with the escort 
formation. For example, suicide ships usually need to 
collide to threaten the escort target. The collision risk can 
be used to measure the threat of collision and provide 
early warning. The relative positions of the escort target 
and the sea target are shown in Fig.8.  

 

 
 

Fig.8 Relationship between the escort target and the sea  
surface target position 

 
The black point in the figure is the position point 

where the sea target is closest to the escort target when 
passing by, that is, the closest encounter point. 

The distance between the closest encounter point and 
the escort target is DCPA, which is calculated as follows:  
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Wherein, the angle is measured clockwise from the 

true north direction, and α is related to the numerator and 
denominator in arctan(). When the numerator ≥0 and the 
denominator >0, α is 0°; when the numerator <0 and the 
denominator <0, α is 180°; when the numerator ≥0 and 
the denominator <0, α is 180°; when the numerator <0 
and the denominator >0, α is 360°. (x0, y0) are the X-axis 
and Y-axis coordinates of the escort target, v0 is the actual 
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speed of the escort target, φ0 is the actual heading of the 
escort target; (xT0, yT0) are the X-axis and Y-axis 
coordinates of the surface target, vT  is the actual speed of 
the surface target, φT is the actual heading of the surface 
target; φR and αT are relative values, φR represents the 
relative heading of the surface target and the escort target, 
αT represents the relative azimuth of the surface target and 
the escort target. 

DCPA is used to quantify the size of the collision 
possibility, thereby constructing a collision risk model. 
The collision risk model defined in this paper is 
constructed using three variables: DCPA, d1 and d2, where 
d1 represents the minimum safe encounter distance, and d2 
represents the zero boundary of the collision risk, usually 
d2≈2d1

[48]. Fig.9 is the graph of the collision risk 
membership function, and the collision risk udT is defined as:  
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Fig.9. Collision risk threat affiliation function graph 
 

(6) AIS response status 
Most sea targets such as warships, cargo ships, cruise 

ships, tugboats, etc. are equipped with AIS response 
systems and can be responded and identified under 
normal circumstances. Unidentified ships such as suicide 
boats, pirate speedboats, illegal fishing boats, etc. are 
usually not responded and identified. In addition, the AIS 
systems of some foreign warships are turned off and 
cannot be responded and identified. Generally, the threat 
level of ship targets whose true legal identities can be 
identified through the AIS response system is low. When 
AIS responds and can be identified, the threat affiliation is 
defined as 0.2; when AIS does not respond and cannot be 
identified, the threat affiliation is defined as 0.8.  
3.1.2 Modeling of target typical intention 
recognition based on historical status 

Threat assessment based only on the current 
instantaneous state of the target cannot fully describe the 
target. Data information at multiple historical moments 

can reflect information such as the target's intention to a 
certain extent. For example, when an unknown surface 
target remains relatively still with the formation for a long 
time, or follows the escort formation to perform 
synchronous turning, acceleration and deceleration, etc., 
it may be that the ship is following before launching an 
attack, which requires special attention. This paper 
establishes a target typical intention recognition model 
based on graph neural network to capture the dynamic 
correlation characteristics between the target and the 
escort formation, and realize end-to-end target typical 
intention recognition. Based on the analysis of the 
changes in the motion state information of the surface 
target and the escort target at multiple moments in the 
time dimension, its behavioral intention is identified, and 
it is used as an evaluation indicator of the threat 
assessment model, combined with the instantaneous state 
indicator defined in Section 3.1.1 for target dynamic 
threat assessment.  

(1) Analysis of typical target intentions 
The definition of "intention": "the basic idea and 

intention to achieve a certain purpose". The meaning of 
intention recognition is to comprehensively analyze 
various target information sources to interpret and judge 
the purpose, idea and intention of the target. Referring to 
the definitions of several typical terms, according to 
different sea surface target characteristics and actual 
scenarios, this paper sets five typical target tactical 
intentions, such as assault, interception, harassment, 
tracking, and retreat, and others (i.e. no obvious intention), 
for a total of six typical target intentions. Among them, 
"others" means that the sea surface target has no obvious 
tactical intention and the threat level is low. For example, 
some sea surface targets pass through the sea area near the 
escort formation at a safe distance without obvious 
tactical behavior. The tactical intention of the target is 
non-numerical data and needs to be digitized. The 
corresponding relationship between the intention space, 
label and threat affiliation is shown in Fig.10. 

 

 
 

Fig.10 Correspondence between intent space, label and  
threat affiliation 

 
Regarding assault intention, "Military Language" 

divides assault intention terminology into detailed categories 
such as frontal assault and flank assault. Assault is defined 
as "an attack on a combat deployment or action formation", 
among which close-range assault is contact-type, such as 
the collision attack of suicide boats. The typical frontal 
assault intention movement trajectory is shown in the 
trajectory of target 1 in Fig.11. The target generally goes 
straight to the escort target, with a fast speed or 
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accelerated maneuvering state, with the highest threat 
level and the greatest threat to the escort target. Its threat 
affiliation is defined as 0.9. Interception intention is 
generally defined as the target's interception and blockade 
against our side. The typical interception intention 
trajectory is shown in the trajectory of target 2 in Fig.11. 
The difference between interception intention and assault 
intention is that assault has the risk of direct collision, 
while interception is the tendency to coerce the other 
party to stop moving. The threat affiliation of interception 
intention is defined as 0.7. The harassment intention is 
generally defined as an action to disturb and restrain the 
opponent. In the sea scene, it is manifested as repeatedly 
approaching and moving away from the opponent in a 
certain pattern to achieve the purpose of repeatedly 
distracting the opponent's attention. The intention can be 
changed in time, and the intentions such as assault and 
retreat can be implemented in a short time. The threat 
affiliation of the harassment intention is defined as 0.6. 
The typical harassment intention trajectory is shown in 
Target 3 in Fig.11. The tracking intention is generally 
defined as an action to observe and continuously measure 
the target. In the sea scene, it is manifested as keeping a 
close distance with the opponent for a long time and 
performing similar maneuvers. Its threat affiliation is 
defined as 0.4, and the typical intention trajectory is 
shown in Target 4 in Fig.11. The retreat intention is 
generally defined as withdrawing from the conflict or 
possible conflict, withdrawing in a planned manner, and 
moving away from the opponent's target. The threat 
degree of this intention is relatively low, and the threat 
affiliation is defined as 0.2. The typical intention 
trajectory is shown in the trajectory of Target 5 in Fig.11. 
Regarding other intentions, it means that the sea surface 
targets have no obvious tactical intentions and the threat 
level is low. For example, some sea surface targets pass 
through the sea area near the escort formation within a 
certain range without obvious tactical behavior. The threat 
affiliation is defined as 0.1. The typical intention 
trajectory is shown in target 6 in Fig.11. 

 

 
 

Fig.11 Schematic diagram of typical target intention  
 

(2) Target Typical Intention Recognition Model 
Based on Graph Neural Network 

In the actual sea environment, when the sea target 
has a specific intention towards the escort target, its 

motion state will change with the change of the escort 
target's motion state. Therefore, it is necessary to 
comprehensively consider the state sequence information 
at historical moments to determine the sea target's intention 
towards the escort target. This paper proposes a target 
typical intention recognition model combined with historical 
states, and the overall block diagram is shown in Fig.12. 

The intention recognition method proposed in this 
paper considers the motion status of the escort formation 
target and the sea surface target at the current and 
historical moments at the same time. The sliding time 
window method (sliding window length is p+1) is used to 
send the motion status (including position, speed, and 
direction) of the escort formation target and the sea 
surface target at the current moment t and the past p 
historical moments into the encoder for encoding, and the 
motion coding features of the escort formation target and 
the sea surface target are obtained respectively. Then, the 
motion coding features of the escort formation target and 
the sea surface target are respectively sent to the 
difference feature extraction module and the dynamic 
association feature extraction module based on the graph 
neural network, and the features extracted by the two 
modules are concated; finally, the concated features are 
passed through the MLP layer and softmax to obtain the 
final intention recognition result. The loss function is 
CrossEntropyLoss. 

The encoder module in this paper adopts the encoder 
part of Transformer. The structure of Transformer model 
is modular, and it is generally divided into two parts: 
encoder and decoder. The encoder mainly converts the 
input state sequence information into a higher- 
dimensional implicit feature vector. The encoder extracts 
the implicit correlation between the sea surface target and 
the escort formation target in their respective time series. 
The encoded features are used as the input of the 
subsequent feature extraction network. The complete 
encoder consists of multiple identical encoding modules, 
and each encoding module is composed of a multi-head 
self-attention layer module, a feedforward neural network 
module, and a residual and normalization module in a 
certain order. The core is the self-attention module. The 
original input of the encoding module is the motion state 
information of multiple targets over a period of time, so it 
needs to be quantized into a computable matrix. This 
process is the input embedding in the figure. 

In order to adapt to the typical intention recognition 
of the time-varying number of sea surface targets, in the 
specific implementation of the algorithm, the maximum 
number of sea surface targets is preset to be NT, the 
maximum total number of USVs and escort targets in the 
escort formation is NU, the length of the sliding time 
window is LT(LT=p+1), and the motion state of all targets 
at each moment is a D1·(D1=1)-dimensional vector (X/Y 
coordinate position, velocity scalar and direction). When 
the number of sea surface targets or the number of escort 
formation targets in the actual scene is less than NT or NU, 
the mask layer is used to ignore the redundant input. The 
feature dimension input to the encoder is [B, N, LT, D1],  
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Fig.12 Overall block diagram of the target typical intention recognition model based on graph neural network 
 

where N=NT+NU, B is the batch size. Since NT and NU are 
the maximum number of sea surface targets and escort 
formation targets preset, assuming that the number of sea 
surface targets and escort formation targets in an actual 
scene is r

TN  and r
UN , the target intention label in this 

scene only corresponds to r
TN  sea surface targets. The 

feature dimension after the encoder is [B, N, LT, D2], and 
the motion state sequence information is converted into a 
higher-dimensional implicit feature vector, and the 
encoder extracts the implicit association between sea 
surface targets and escort formation targets in their 
respective time series. The LT state vector of each sea 

surface target and escort formation target at each moment 
is encoded into a feature vector of [LT, D2] dimension , 
and the encoded features are used as the input of the 
difference feature extraction module and the dynamic 
association feature extraction module. 

3.2 Threat Assessment Based on Multi-Attribute 
Decision Analysis 

In Section 3.1, this paper established a target threat 
assessment index system, including instantaneous state 
indicators (target category, target distance, target heading, 
target speed, collision risk, AIS response status) and target 
typical intentions based on historical status, totaling 7 
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indicators. Based on the above indicator evaluation 
system, this section establishes a multi-attribute decision 
analysis model, calculates the weight of the dynamic 
evaluation index at each moment according to the entropy 
weight method, and then uses the improved approximate 
ideal solution method to calculate the relative closeness of 
different targets. Among them, this paper proposes a 
method of calculating relative closeness based on 
Euclidean distance and gray correlation weighted 
calculation, which can more objectively distinguish the 
threat level of different targets. Relative closeness reflects 
the relative threat level of different targets, and then the 
target threat ranking and dynamic analysis are performed 
based on the relative closeness. 

First, construct an evaluation matrix. Assume that 
there are m evaluation schemes, the set of evaluation 
schemes is G={G1, G2, …, Gm}, the set of indicators 
composed of evaluation indicators is T={T1, T2, …, Tn}, 
and the attribute value of the evaluation object Gi 
corresponding to the indicator Tj at time t is t

ijx , then the 
evaluation matrix of the evaluation object with respect to 
the evaluation indicator is ( )t

t ij m n
X x

×
= . In this paper, 

the m evaluation schemes represent the number of sea 
surface targets, and n=7 in the evaluation indicator set, 
represents the 7 evaluation indicators considered in this 
paper, namely, target category, target distance, target 
heading, target speed, collision risk, AIS response status, 
and target typical intention. Since this paper has 
established a threat affiliation function for each evaluation 
indicator, the value of the evaluation indicator t

ijx  has 
been standardized to between 0 and 1. 

According to the definition of information entropy, 
the information entropy of each indicator at time t is 
calculated: 
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1
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t t t
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Based on the information entropy of each indicator at 
time t, the weight of each indicator at time is calculated: 

 
1 t

jt
j t

j

E
w

m E
−

=
−

 (14) 

Based on the threat assessment index system 
established in this paper and the weights of different 
evaluation indicators at each moment, the evaluation 
matrices of multiple targets are calculated to be close to 
the positive and negative ideal solutions respectively, and 
finally the target threats are comprehensively evaluated 
and ranked according to the relative closeness. The 
specific steps are as follows: 

Step 1: Get the evaluation index matrix ( )t
t ij m n

X x
×

=  

of all targets at time t, where the i row represents the 
evaluation scheme of target i, including the 7 evaluation 
index values of target i. 

Step 2: Determine the positive ideal scheme t
jx +  

and negative ideal scheme t
jx −  at different moments 

respectively. This paper stipulates that the positive ideal 
scheme is [1, 1, 1, 1, 1, 1, 1] and the negative ideal 
scheme is [0, 0, 0, 0, 0, 0, 0], because the 7 evaluation 
indicators of this paper have been standardized to [0, 1] 
through the threat affiliation function, and the larger the 
value, the higher the threat level. 

Step 3: Calculate the gray correlation between 
different evaluation schemes and positive and negative 
ideal schemes. Calculate the gray correlation coefficient 
between the i evaluation scheme at time t and the positive 
and negative ideal schemes about the index j, as shown 
below. 

min min max max

max max

t t t t
i j ij j i j j ijt

ij t t t t
j ij i j j ij

x x x x

x x x x

ρ
γ

ρ

+ +
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− + −
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Among them, ρ is the discrimination coefficient, 
ρ ⊂ [0, 1]. Based on the grey correlation coefficient, 
combined with the calculated index weights, the grey 
correlation degree t

ir
+  and t

ir
−  of the i-th evaluation 

scheme at the time t about the j-th index is further 
calculated. 
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Step 4: Based on the Euclidean distance, calculate 
the distances t

id +  and t
id −  between the i-th evaluation 

scheme and the positive and negative ideal schemes at 
time t. 
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Step 5: Calculate the closeness between the 
evaluation scheme and the positive and negative ideal 
solutions, and perform dimensionless processing on the 
grey correlation degree and distance. 
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Step 6: Perform weighted summation of 
dimensionless Euclidean distance and grey correlation. 
When the values of t

iD −  and t
iR +  are larger, the 

evaluation scheme is closer to the positive ideal solution, 
indicating that the threat level of target i is greater; on the 
contrary, when the values of t

iD +  and t
iR −  are larger, 

the evaluation scheme is closer to the negative ideal 
solution, indicating that the threat level of target is smaller. 
Further, the Euclidean distance and grey correlation are 
fused in the following way. 

 1 2
t t t
i i iE D Rβ β+ − += + , 1 2

t t t
i i iE D Rβ β− + −= +  (22) 

Where, β1 and β2 are the preference coefficient, 
β1+β2=1, β1, β2∈[0, 1] 

Step 7: Obtain the relative closeness of the 
comprehensive Euclidean distance and grey correlation 
degree by weighted method. The relative closeness of the 
i-th evaluation scheme at time t is: 

 1,2, ,
t

t i
i t t

i i

EZ i m
E E

+

+ −= =
+

  (23) 

Then, the relative proximity of different targets at 
time is obtained, and the threats of different targets are 
further ranked according to the size of the relative 
proximity. 

4 Data Generation 
This paper develops an unmanned boat confrontation 

simulation system based on Unity 3D, which includes 3D 
models of 1 unmanned boat, 25 typical sea surface ship 
targets, 2 islands, 1 buoy, etc. It can display the motion 
status of multiple unmanned boats and typical ship targets 
in real time, display and access the visible light and infrared 
pod image data of the unmanned boat, and simulate the 
echo data of the unmanned boat's navigation radar. 

Fig.13 shows the unmanned boat confrontation 
simulation system. The main interface includes the 
message command display area, parameter setting area, 
global situation display area, and unmanned boat visual 
display area (including visible light, infrared, and radar 
simulation data). In the simulation system, different sea 
conditions can be set, as well as complex weather scene 
simulations such as rain and fog, to be closer to the real 
sea environment. The control parameters of the unmanned 
boat and the sea surface target can be pre-set by the 
program control, real-time manual control using the 
handle, or real-time protocol control through the TCP 
protocol. The simulation system can output the motion 
status of all unmanned boats and sea surface targets, 
including position coordinates, speed, direction and other 
information, and save them as json format files; at the 
same time, the visible light, infrared and radar simulation 
data from the perspective of the unmanned boat can also 
be output in the form of video streams through the RTSP 
protocol, or can be directly saved on the server hard disk. 
The confrontation simulation system supports the 
third-party 3D free perspective to view the real-time scene 

operation status, as well as the global situation 
perspective from a bird's-eye view. The confrontation 
simulation system supports reading json data files to 
review and demonstrate the scene, which is convenient 
for experimental verification. 

 

 
 

Fig.13 Simulation system interface 
 

The intention recognition data set in this paper is 
generated in the unmanned boat confrontation simulation 
system. The real intention of the operator responsible for 
controlling the sea surface target is used as the true value 
of the intention data. The system sets the red and blue 
sides to generate data. The schematic diagram of the 
intention recognition data generation process is shown in 
Fig.14. First, define the rule form of assault, interception, 
harassment, tracking, retreat and other intentions; 
secondly, the movement of the sea surface target (blue 
side) is controlled by a group of personnel using handles 
respectively, and the movement of the unmanned boat 
escort formation (red side) is pre-set by the program or 
manually controlled by another group of personnel. The 
relative position of our unmanned boat and the target     
can be seen from a global perspective; the unmanned 
confrontation simulation system will automatically record 
the movement status of our unmanned boat and other sea 
surface targets, including coordinate position, movement 
speed and movement direction; after completing the 
generation of a set of data, save the set of data in json data 
format. A total of 4000 data were recorded. In the training 
set, the numbers of assault, interception, harassment, 
tracking, retreat, and other intentions were 520, 468, 461, 
468, 424, and 459 respectively, and the total number of 
data in the training set was 2800; in the test set, the 
numbers of assault, interception, harassment, tracking, 
retreat, and other intentions were 194, 196, 201, 218, 197, 
and 190 respectively, and the total number of data in the 
test set was 1196. 

Threat assessment algorithm verification data is also 
generated in the unmanned boat confrontation simulation 
system. The movement status of our unmanned boat 
formation and sea surface targets are recorded in the json 
file. It is worth noting that our formation has a total of 5 
targets, consisting of 1 escort target and 4 escort boats 
(USV1, USV2, USV3, USV4). The operator responsible 
for controlling the sea surface target will record the 
operator's true intentions and corresponding times at 
different times, such as raids, retreats, and passing 
voyages without tactical intentions. 
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Fig.14 Schematic diagram of intent recognition data generation process 
 

5 Results 
This section verifies the threat assessment algorithm. 

First, we analyze the impact of different factors on the 
threat assessment results. Second, we verify the scientificity 
and rationality of the threat assessment algorithm in a 
typical multi-target scenario. The relative closeness 
calculated in this paper is the relative value of the threat. 
This paper focuses more on the threat ranking of different 
targets, timely identifying and responding to fast and 
hidden raid target threats, and more accurately determining 
which targets or areas require more attention and resources, 
providing important decision-making basis and helping to 
formulate effective defense strategies or countermeasures. 

5.1 Analysis of the impact of different factors on 
threat assessment 
5.1.1 Impact of intent recognition results 

Fig.15(a) shows the motion trajectory of the 
unmanned boat formation and two sea targets within 40 
seconds. Target 1 has the characteristics of repeated 
approach and distance, and target 2 first moves slowly and 
then moves away from the unmanned boat formation. 
Targets 1 and 2 are both speedboats. At the end of the 
track of the two targets, the positive direction of the axis is 
taken as 0°, and the counterclockwise directions are 
0-360°. The position, speed, and direction of target 1 are 
(1918 m, 1566 m), 30 m/s, and 33°, respectively, and the 
position, speed, and direction of target 2 are (1918 m, 
434 m), 30 m/s, and 327°, respectively. It can be found that 
targets 1 and 2 have mirrored motion states relative to the 
unmanned boat formation, and AIS can identify them. 
Without considering the intention factor, according to the 
threat affiliation function characteristics of the other six 
factors, the relative closeness of target 1 and target 2 at the 

end of the track should be the same, that is, the evaluation 
result shows that the two targets have the same threat level. 
However, due to the repeated changes in distance, heading, 
and relative speed of target 1 relative to the unmanned 
boat formation, the movement of target 1 has greater 
uncertainty, while the movement of target 2 is relatively 
stable. Therefore, target 1 should pose a greater threat to 
the escort target than target 2. 

The algorithm model in this paper can judge the 
target threat more objectively by considering the 
historical state of the target, defining and identifying the 
typical intention of the target. As shown in Fig.15(b), the 
intention recognition model in this paper identifies the 
intention of target 1 as harassment at the 15th second, 
with a threat affiliation of 0.6; at the 15th second, it 
identifies the intention of target 2 as tracking, with a threat 
affiliation of 0.4, and at the 35th second, it identifies the 
intention of target 2 as retreat, with a threat affiliation of 
0.2. Fig.15(c) and (d) are the relative proximity estimation 
results of different targets and the threat ranking results of 
different targets of the algorithm in this paper, respectively. 
The larger the value of the target threat ranking result, the 
higher the threat level. For example, the threat degree of 
the target ranked 2 is higher than that of the target ranked 
1. From the 1st to the 7th second, the algorithm determines 
that the relative proximity of target 2 is higher than that of 
target 1. This is because target 1 is far away from the 
unmanned boat formation during this period, and the 
relative heading angle is also larger, which is in line with 
the objective situation. After the 7th second, as target 1 
began to move toward the unmanned boat formation, the 
distance, heading, and relative speed of target 1 relative to 
the unmanned boat formation began to change repeatedly, 
and the relative closeness of target 1 was always higher 
than that of target 2. At the 40th second, at the end of the 
track, the relative closeness of target 1 was about 0.12 
higher than that of target 2. Based on the above analysis, it 
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is shown that the intention recognition model in this paper 
can give accurate intention judgments based on the historical 
motion state of the target, and can more scientifically and 
reasonably calculate the relativecloseness of different targets 
and sort the target threats. The threat assessment results 
are consistent with the objective situation. 
5.1.2 Effect of distance 

This paper analyzes the influence of distance factors 
on threat assessment results, and the results are shown in 
Fig.16. Fig.16(a) shows the motion trajectory of the 
unmanned boat formation and two sea targets within 20 
seconds. Target 1 and target 2 are heading towards the 
unmanned boat formation from different directions and  
positions at the same speed. Targets 1 and 2 are both 

speedboats. The positive direction of the axis is 0°, and 
the counterclockwise direction is 0-360°. The initial 
position, speed, and direction of target 1 are (2200 m, 
1500 m), 20 m/s, and 225°, respectively. The position, 
speed, and direction of target 2 are (2500 m, 200 m), 
20 m/s, and 135°, respectively. Both targets AIS respond. 
Fig.16 (b) and (c) are the relative closeness estimation 
results and threat ranking results of different targets of the 
proposed algorithm, respectively. As time goes by, the 
relative closeness of the two targets tends to increase, and 
the relative closeness of target 1 is always higher than that 
of target 2. Therefore, the threat level of target 1 is always 
higher than that of target 2, and the ranking results are 
consistent with the objective situation. 

 

 
 

Fig.15 Analysis of the impact of intent recognition results on threat assessment results 
 

 
 

Fig.16 The impact of distance on threat assessment results 
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5.1.3 Influence of heading 
This paper analyzes the impact of target heading on 

threat assessment results, and the results are shown in 
Fig.17. Fig.17(a) shows the motion trajectory of the 
unmanned boat formation and two sea targets within 20 
seconds. From the 1st to the 10th second, target 1 and 
target 2 respectively sailed towards the unmanned boat 
formation from different positions and at the same speed. 
Targets 1 and 2 are both speedboats. The positive 
direction of the axis is 0°, and the counterclockwise 
direction is 0-360°. The initial position, speed, and 
direction of target 1 are (2500 m, 1800 m), 20 m/s, and 
225°, respectively. The position, speed, and direction of 
target 2 are (2500 m, 200 m), 20 m/s, and 135°, 
respectively. Both targets AIS responded. The heading 
and speed of target 1 remain consistent. At the 10th 
second, target 2 adjusts its direction to 180° and 
maintains this direction until the end of the 20-second 
track. 

Fig.17 (b) and (c) are the relative closeness 
estimation results and threat ranking results of different 
targets of the proposed algorithm, respectively. Since 
target 1 and target 2 have mirrored motion states relative 
to the unmanned boat formation during the period of 1-10 
seconds, the heading angle threat affiliation is the same, 
and since the AIS and intention elements are the same, the 
two targets have the same relative closeness. After the 
10th second, due to the turn of target 2, the relative 
heading angle between target 2 and the unmanned boat 

formation is 180°, so the heading angle threat affiliation 
becomes 0. After target 2 turns, the threat degree of target 
2 is lower than that of target 1, which is consistent with 
the objective situation. 
5.1.4 Speed Impact 

This paper analyzes the impact of target speed on 
threat assessment, and the results are shown in Fig.18. 
Fig.18 (a) shows the motion trajectory of the unmanned 
boat formation and two sea targets within 20 seconds. 
Targets 1 and 2 sail on both sides of the unmanned boat 
formation from different positions and at different speeds. 
Targets 1 and 2 are both speedboats. The positive 
direction of the axis is 0°, and the counterclockwise 
direction is 0-360°. The initial position, speed, and 
direction of target 1 are (1000 m, 1600 m), 20 m/s, and 
350°, respectively. The position, speed, and direction of 
target 2 are (1000 m, 400 m), 20 m/s, and 10°, respectively. 
Both targets respond to AIS. The heading and speed of 
targets 1 and 2 remain unchanged for 20 seconds. Fig.18(b) 
and (c) show the relative closeness estimation results and 
threat ranking results of different targets of the proposed 
algorithm, respectively. At the initial moment, the 
positions and headings of targets 1 and 2 relative to the 
unmanned boat formation are mirror images, and only the 
speeds are different. The speed threat affiliation of target 1 
is higher. The relative closeness of target 1 is higher than 
that of target 2 during the entire movement, which is 
consistent with the objective situation. 

 

 
 

Fig.17 The impact of target heading on threat assessment results 
 

 
 

Fig.18 The impact of target speed on threat assessment results. 
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5.1.5 Impact of collision risk 
This paper analyzes the impact of collision risk 

factors on threat assessment results, and the results are 
shown in Fig.19. Fig.19 (a) shows the motion trajectory of 
the unmanned boat formation and two sea targets within 
20 seconds. Targets 1 and 2 sail on both sides of the 
unmanned boat formation from different positions and at 
different speeds. Targets 1 and 2 are both speedboats. The 
positive direction of the axis is 0°, and the 
counterclockwise direction is 0-360°. The initial position, 
speed, and direction of target 1 are (1625 m, 1800 m), 
20 m/s, and 270°, respectively. The position, speed, and 
direction of target 2 are (1700 m, 400 m), 40 m/s, and 90°, 
respectively. Both targets AIS respond. The heading and 
speed of targets 1 and 2 are always the same as the initial 
state within 20 seconds. In this scenario, the target distance 
factor also affects the threat assessment results. By 
comparing the weights of different factors, it is found that 
the weight of the collision risk factor is higher than the 
distance factor weight, and it dominates in this scenario. 

Fig.19(b) and (c) are the relative proximity 
estimation results and threat ranking results of different 
targets of the proposed algorithm, respectively. If target 1 
does not change its motion state, target 1 will collide with 
the unmanned boat formation, and target 2 will not collide 
with the unmanned boat formation if it maintains its 
current motion state. Therefore, the threat level of target 1 
is higher than that of target 2 during the entire motion 
period, which is consistent with the objective situation.  

5.1.6 Impact of AIS and target type 
This paper analyzes the impact of AIS response and 

target type on threat assessment, and the results are shown 
in Fig.20. Fig.20 (a) shows the motion trajectory of the 
unmanned boat formation and three sea surface targets 
within 20 seconds. Targets 1, 2, and 3 sail on both sides of 
the unmanned boat formation from different positions, at 
the same speed and in the same direction. Targets 1 and 3 
are speedboats, and target 2 is a fishing boat. The positive 
direction of the axis is 0°, and the counterclockwise 
direction is 0-360°. The initial position, speed, and 
direction of target 1 are (1400 m, 1600 m), 7.5 m/s, and 0°, 
respectively, and AIS responds; the position, speed, and 
direction of target 2 are (1400 m, 400 m), 7.5 m/s, and 0°, 
respectively, and AIS responds; the position, speed, and 
direction of target 3 are (1000 m, 400 m), 7.5 m/s, and 0°, 
respectively, and AIS does not respond. The positions, 
speeds, and headings of targets 1 and 2 are mirror images 
relative to the unmanned boat formation, with only the 
categories being different; the positions, speeds, and 
headings of targets 1 and 3 are mirror images relative to 
the unmanned boat formation, with only the AIS responses 
being different. The headings and speeds of targets 1, 2, and 
3 remain the same as the initial states for 20 seconds. 
Fig.20(b) and (c) are the relative proximity estimation 
results of the proposed algorithm for different targets and 
the threat ranking results of different targets. The threat 
ranking of targets 1, 2, and 3 is that target 3 has the highest 
threat, followed by target 1, and target 2 has the lowest 
threat, which is consistent with the objective situation. 

 

 
 

Fig.19 Impact of collision risk on threat assessment results. 
 

 
 

Fig.20 The impact of target type and AIS response on threat assessment results 



102 Zhen Zuo et al: Threat assessment method considering target instantaneous and historical states 
 
 
 
 
 

 

5.2 Analysis of threat assessment results under 
multiple targets 

Section 5.1 of this paper mainly analyzes the impact 
of a single major influencing factor on the target threat 
assessment results by setting 2 or 3 targets in each 
scenario. The following will design a more complex 
scenario to verify the scientificity and rationality of the 
threat assessment of the algorithm in this paper under the 
condition of multiple targets. 

This paper uses the unmanned boat confrontation 
simulation system developed based on Unity3D to 
generate typical sea surface target scene data. There are 6 
targets in the scene, and the unmanned boat formation 
consists of 5 unmanned boats, among which the most 
central one is the escort target, and the total duration is 
100s. In general, target 1 is a speedboat, which was 
located in front of the left of the unmanned boat formation 
and moved in a direction of 180° in the first 20 seconds, 
and then turned towards the unmanned boat formation. 
The AIS never responded; target 2 is a speedboat, which 
was located in front of the right of the unmanned boat 
formation and moved in a direction of 180° in the first 35 
seconds, and then turned towards the unmanned boat 
formation. The AIS never responded; target 3 is a 
speedboat, which was located behind the right of the 
unmanned boat formation and moved in a direction of 0° 
in the first 65 seconds, and then turned towards the 
unmanned boat formation. The AIS never responded; 
target 4 is a fishing boat, which is located behind the 
unmanned boat formation and moved in a direction of 
about 220°. The AIS can respond; target 5 is a speedboat, 
which is located behind the left of the unmanned boat 
formation and repeatedly approaches and moves away 
from the unmanned boat formation along the direction of 
0°. The AIS never responded; target 6 is a speedboat, 
which is located behind the unmanned boat formation and 
moves in a curve at about 270°. The AIS can respond. 
Fig.21 shows the movement trajectory of the escort 
formation and the target, as well as the target’s (target 
operator in the simulation system) true intention. 
5.2.1 Threat assessment results of the algorithm in 
this paper 

Fig.22 shows the threat assessment results of 

multiple targets calculated by the algorithm in this paper. 
Fig.22(a)-(g) show the curves of the threat affiliation 
functions of target distance, type, heading, speed, AIS 
response, intention and collision risk over time, and 
Fig.22(h) shows the curves of the relative proximity 
estimation results of different targets over time. It is worth 
noting that due to the Matlab drawing mechanism, when 
the values of multiple lines are the same, only one color 
can be displayed in the Matlab figure. Fig.22(b)(e) is 
specially explained in text. Target 4 is a fishing boat, and 
the rest of the targets are speedboats; Target 4 and Target 6 
responded to AIS in the 5th second, and the rest of the 
targets did not respond, which is consistent with the 
situation set in the countermeasure system simulation. 

In terms of target intention recognition, it can be seen 
from Fig.22(f) that the intention recognition method of 
this paper can effectively perform typical intention 
recognition based on the movement of the target and the 
unmanned boat formation. For example, targets 1 and 2 
are judged as assault intentions at 35 seconds and 43 
seconds respectively, and are given a higher threat 
affiliation. Target 3 is judged as tracking at 15 seconds 
and assault intention at 73 seconds. Target 5 is first judged 
as tracking intention and then as harassment intention, 
which is consistent with the real tactical intention of the 
target (target operator in the deduction system). When 
targets 1, 2, and 3 are launching a surprise attack, the 
algorithm of this paper can promptly find the surprise 
target among all targets, and make a reasonable target 
threat ranking based on the target speed, distance, etc., 
highlighting the most dangerous and important targets. 
According to Fig.22(i), within 0-30 seconds, since target 5 
is close to the unmanned boat formation and its intention 
is judged to be tracking and then harassing, it has the 
highest threat level; when target 1 launches a surprise 
attack, the algorithm determines that target 1 has the 
highest threat level at 38-43 seconds; then, since target 2 
launches a surprise attack and target 2 has a higher speed 
than target 1, the algorithm determines that target 2 has 
the highest threat level; after target 2 retreats, target 3 
launches a surprise attack and target 3 has a higher speed 
than target 1, so target 3 has the highest threat level. The 
threat assessment results of the algorithm are consistent 
with the objective situation, which proves the scientificity 
and rationality of the algorithm in this paper.  

 

 
 

Fig.21 Escort formation and target trajectory diagram and the target’s (target operator in the simulation system) real intention 
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5.2.2 Comparative analysis of threat assessment 
results with other methods 

To further verify the effectiveness of the proposed 
algorithm, the CRITIC-TOPSIS method[49] was selected 
as the comparison algorithm. 

Fig.23 shows the target threat assessment result of 
the CRITIC-TOPSIS method for the scene in Fig.21. It 
can be seen that when target 1 launches a surprise attack, 
the CRITIC-TOPSIS method can give target 1 a higher 
relative closeness. However, when target 3 launches a 
surprise attack at 65 seconds and its speed is higher than 
that of target 1, the algorithm fails to improve the relative 
closeness of target 3 and ranks its threat level third. The 
algorithm fails to make a reasonable judgment. 

In order to further intuitively compare the threat 

assessment results of the algorithm in this paper and the 
comparison algorithm, the target state and the relative 
closeness estimation results of the algorithm at the 49th 
and 76th seconds of the scene in Fig.21 are compared 
respectively. Fig.24 shows the target motion trajectory at 
t=49 s and t=76 s. 

Table 2 shows the target state at t=49 s and the 
relative closeness estimation results of different methods. 
At t=49 s, targets 1 and 2 in the unmanned boat 
confrontation simulation system launched a surprise 
attack on the unmanned boat escort formation. Target 2 
is closer to the unmanned boat formation than target 1, 
and the speed of target 2 is 37 m/s, which is higher than 
8 m/s of target 1. Target 2 should have a higher threat 
than target 1. 

 

 
 

 
Fig.22 Multiple target threat assessment results  
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Fig.23 Threat assessment results of the comparison algorithm 
 

 
 

Fig.24 Target motion trajectory at two different times 
 

Table 2 Target status and threat assessment results of different methods (t=49 s) 

ID Type Coordinate 
(m) 

Heading 
(degree) 

Speed 
(m/s) Collision risk Intention AIS

Relative closeness of  
different methods 

Proposed method CRITIC-TOPSIS

1 Speedboat (2550,1592) 216.0 8.0 0.1705 assault No 0.4713 0.5084 

2 Speedboat (2292,528) 147.0 37.0 0.0068 assault No 0.5650 0.4053 

3 Speedboat (556,500) 0.0 4.0 0.0047 tracking No 0.2737 0.3224 

4 Fishing boat (494,1226) 219.0 6.0 0.0089 others Yes 0.1321 0.0994 

5 Speedboat (844,1510) 12.0 10.0 0.0385 harassment No 0.3772 0.2420 

6 Speedboat (586,1390) 270.0 12.0 0.0110 others Yes 0.1757 0.1091 
 

According to the typical target intention recognition 
model of this paper, targets 1 and 2 are correctly identified 
as assault intentions, target 5 is correctly identified as 
harassment intentions, and target 3 is correctly identified 
as tracking intentions. The speeds of target 5 and target 3 
are 10 m/s and 4 m/s respectively. Considering the 
uncertainty of the motion trajectory of target 5 (repeatedly 
approaching and moving away from the unmanned boat 
formation), target 5 should have a higher threat than target 
3. Let mi represent the relative closeness value of the i-th 

target. According to the algorithm of this paper, the 
relative closeness is calculated. According to the size of 
the relative closeness, the threat ranking result of the 
target by the algorithm of this paper can be obtained as 
follows: m2>m1>m5>m3>m6>m4, while the relative 
closeness of the target is calculated according to the 
CRITIC-TOPSIS method, and the threat ranking result of 
the target is obtained according to the size of the relative 
closeness: m1>m2>m3>m5>m6>m4. By considering 7 
evaluation indicators and assigning reasonable weights, 
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the algorithm of this paper correctly makes the following 
judgments: the threat of target 2 is higher than that of 
target 1, the threat of target 5 is higher than that of target 3, 
and target 2 is in a state of surprise attack and has the 
highest threat, which is consistent with the above analysis 
and the objective situation of this scene in the unmanned 
boat confrontation simulation system. The CRITIC- 
TOPSIS algorithm determines that the threat of target 2 is 
lower than that of target 1, and the threat of target 5 is 
lower than that of target 3. Due to the confusion of the 
weighting of the evaluation indicators, the CRITIC- 
TOPSIS algorithm fails to make a reasonable target threat 
estimate. In summary, the algorithm in this paper can 
more scientifically calculate the relative proximity of the 
target and automatically make a more reasonable target 
threat ranking judgment, and timely warn the raid targets 
with higher threat. 

Table 3 shows the target state at t=76 s and the 
relative closeness estimation results of different methods. 
At t=76 s, targets 1 and 3 in the unmanned boat 
confrontation simulation system launched a surprise 
attack on the unmanned boat escort formation. Target 3 is 
closer to the unmanned boat formation than target 1, and 
the speed of target 3 is 31 m/s, which is higher than the 
8 m/s of target 1. Target 3 should have a higher threat than 
target 1; the motion trajectory of target 5 is uncertain 
(repeatedly approaching and moving away from the 
unmanned boat formation). Compared with target 2, it is 
closer to the unmanned boat formation, and target 2 is in 
retreat and gradually moving away from the unmanned 

boat formation. Therefore, target 5 should have a higher 
threat than target 2. According to the typical target 
intention recognition model in this paper, targets 1 and 3 
are correctly identified as assault intentions, target 5 is 
correctly identified as harassment intentions, and target 2 
is correctly identified as retreat intentions. According to 
the size of the relative closeness, the result of the target 
threat ranking of the algorithm in this paper is: 
m3>m1>m5>m2>m6>m4, and according to the CRITIC- 
TOPSIS method, the relative closeness of the target is 
calculated, and the result of the target threat ranking 
according to the size of the relative closeness is: 
m3>m1>m5>m2>m6>m4. By considering 7 evaluation 
indicators and assigning reasonable weights, the 
algorithm in this paper correctly makes the following 
judgments: the threat of target 3 is higher than that of target 1, 
the threat of target 5 is higher than that of target 2, and 
target 3 is in a surprise attack state and has the highest 
threat, which is consistent with the above analysis and the 
objective situation of this scene in the unmanned boat 
confrontation simulation system. However, the CRITIC- 
TOPSIS algorithm determines that the threat of target 3 is 
lower than that of target 5 and target 1. Due to the 
confusion of the weighting of the evaluation indicators, 
the CRITIC-TOPSIS algorithm fails to make a reasonable 
target threat estimate. In summary, the algorithm in this 
paper can calculate the relative closeness of the target 
more scientifically and automatically make a more 
reasonable target threat ranking judgment, and timely 
warn the surprise targets with higher threat levels. 

 
Table 3 Target status and threat assessment results of different methods (t=76 s) 

ID Type Coordinate 
(m) 

Heading 
(degree) 

Speed 
(m/s) Collision risk Intention AIS

Relative closeness of  
different methods 

Proposed method CRITIC-TOPSIS

1 Speedboat (2370,1470) 216.0 8.0 0.2889 assault No 0.6140 0.2803 

2 Speedboat (1882,228) 246.0 9.0 0.0026 retreat No 0.2431 0.1359 

3 Speedboat (842,574) 18.0 31.0 0.3230 assault No 0.6630 0.2015 

4 Fishing boat (394,1134) 231.0 4.0 0.0059 others Yes 0.0995 0.0825 

5 Speedboat (1080,1510) 6.0 5.0 0.0279 harassment No 0.4098 0.3020 

6 Speedboat (658,926) 291.0 10.0 0.0068 others Yes 0.1533 0.0985 

 
6 Conclusion 

In order to solve the problem of insufficient target 
information mining and failure to consider the historical 
motion state of the target in target threat assessment, this 
chapter establishes a threat assessment model that 
considers the instantaneous state and historical state of 
the target. The instantaneous state of the target considers 
six evaluation indicators, including target category, 
target distance, target heading, target speed, collision risk, 
and AIS response status; a target typical intention 

recognition model based on historical state is established, 
and a typical intention recognition method based on 
graph neural network is proposed to capture the dynamic 
correlation characteristics between the target and the 
escort formation, realize end-to-end target typical 
intention recognition, and use the intention recognition 
result as an evaluation indicator of the threat assessment 
model. Then, threat affiliation functions are established 
for the seven evaluation indicators respectively, and the 
evaluation indicators are weighted based on 
multi-attribute decision analysis, and then the relative 
closeness between the evaluation schemes of different 
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targets and the positive and negative ideal schemes is 
calculated, and the target threat ranking is determined 
based on the relative closeness. This chapter designs and 
develops an unmanned boat confrontation simulation 
system, and generates a typical intention recognition data 
set and threat assessment scenario simulation data 
through real-life confrontation. The simulation 
experiments verified the excellent performance of the 
proposed method in identifying typical target intentions. 
The comparative analysis showed that the proposed 
method can timely detect surprise target threats and give 
scientific and reasonable target threat ranking results. In 
the future, the proposed method will be implemented in 
the real scene with USVs in the sea to test the 
practicality of proposed method. Besides, more 
comparative methods will be implemented to make our 
results more credible. Furthermore, more factors will be 
considered in the threat assessment method, such as 
weapon or the size of targets, to make the evaluation 
results more fair and objective. 
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