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Abstract: A fault diagnosis method based on continuous wavelet transform and improved 
multi-dimensional residual network was proposed to solve the problem that the working 
environment of precision machining equipment is very complicated, and the fault characteristic 
signal is weak and hard to extract. Firstly, the best wavelet base Cmor 3-3 is selected by 
comparing 6 different wavelet base types. Secondly, continuous wavelet transform (CWT) is 
applied to the acquired original vibration signal to generate the feature map and process the 
gray level. Finally, the improved ResNeXt network is used to diagnose faults in precision 
machining equipment. The experimental results show that the proposed CWT and the improved 
ResNeXt algorithm have high accuracy in identifying precision machining equipment faults in 
complex environments, with an average accuracy of 99.4%. 
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0 Introduction 
Precision machining is an essential part of 

machining production, but its complex working 
environment makes its state difficult to identify and fault 
characteristics difficult to extract. For example, in the 
machining process, the vibration of the tool system and 
the coupling among various environmental factors make 
the final signal very complex. Extracting the effective 
state signal, namely the fault signal, from the background 
of complex environmental coupling is an important study 
for the state monitoring of finishing equipment[1]. Many 
scholars have researched the condition monitoring of 
processing equipment under a complex background. Yu 
Chunyu[2] et al. proposed an intelligent fault diagnosis 
method for bearings in complex environments based on 
EMD-AR and an improved broad learning system(BLS). 
Zhang Ruicheng[3] et al. proposed a fault diagnosis 
method for wind power converters under the complex 
background of Local Mean Decomposition (LMD) 
energy entropy and positioning analysis switch. However, 
both the empirical mode decomposition (EMD) and LMD 

will have endpoint effects and mode aliasing phenomena. 
Li[4] proposed a based on experience wavelet transform 
(EWT) -synchronous extraction complex environment 
equipment bearing fault identification technology, which 
can effectively diagnose the degree of fault and damage, 
EWT overcome the EMD method of under envelope and 
envelope and mode mix problem, but EWT need to define 
the filter set boundary, poor adaptability, and consume 
much time. 

In recent years, due to the excellent ability of deep 
learning algorithms, which can mine the advantages of 
potential features of data well, more and more scholars 
have used deep neural networks to conduct fault diagnosis 
of devices in complex backgrounds. Li Weihua and et al. [5] 
used a deep confidence network (DBN) to directly learn 
the fault characteristics of mechanical equipment bearings 
from the original signal for fault diagnosis, realizing the 
fault classification of bearings and controlling the cost of 
DBN. Cao et al.[6] uses the long-term and short-term 
memory network (LSTM) for fault diagnosis and 
identification of mechanical equipment in complex 
environments. Chen[7] et al. discrete the fault signals of 
mechanical equipment in complex working environments 
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to obtain the two-dimensional time-frequency 
information then input it to the convolutional neural 
network (CNN) for classification and identification. All 
the above methods have achieved good results. However, 
static convolution is used in the network structure of these 
deep neural networks, and parameters cannot be adjusted 
adaptively according to different situations. 
Corresponding weights can be assigned to the 
convolution kernel to extract features fully. 

Based on the above factors, this paper proposes a 
fault diagnosis method for precision machining 
equipment based on CWT and improved ResNeXt. 
Compared with EMD and LMD, CWT has the ability to 
represent the local characteristics of signals in both the 
time domain and frequency domain. CWT can decompose 
the signals into different frequencies and scales, which 
can more effectively handle the vibration signals in 
complex backgrounds. The improved multi-dimensional 
residual network into the fault diagnosis of precision 
machining equipment in complex background can 
effectively avoid the gradient descent problem caused by 
the stacking of model layers and then realize the fault 
diagnosis of precision machining equipment in complex 
environment. 

1 Establishment of a fault diagnosis 
model for precision equipment 
1.1 The wavelet transform 

Wavelet transform is very suitable for analyzing 
non-stationary nonlinear fault signals in complex 
backgrounds, and vibration signals of precision 
machining equipment are often nonlinear in complex 
environments, and wavelet transform can decompose 
vibration signals from two scales of time and frequency. 
So this paper uses wavelet transform and its time and 
frequency map to carry out the fault diagnosis of precision 
machining equipment in a complex environment. 
Continuous wavelet transform (Continuous wavelet 
transform, CWT) transforms the original vibration signal 
data into a two-dimensional time-frequency diagram. The 
essence of continuous wavelet transforms lies in the 
translation and scale transformation of the wavelet base to 
approximate the original data as much as possible. For 

0a∀ ≠ , b R∈ , then the wavelet basis function of the 
dependent parameters a, and b can be expressed as: 

 1( , )( ) t ba b t
aa

ψ − Ψ =  
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where a is the scale factor that affects the scaling of 
the function ( )tΨ ; b is the displacement factor that 
affects the translation of the function ( )tΨ . 

It meets the allowable conditions: 
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If the signal 2( ) ( )f t L R∈  represents the whole 
body of the energy-limited signal, the wavelet 
transformation of ( )f t  is: 

 ( , ) ( ) ( , )( )fW a b f t a b t dtΨ+∞
−∞=   (3) 

where ( , )( )a b tΨ  is the conjugate complex of the 
wavelet basis function ( , )( )a b tΨ . 

1.2 Improve the multi-dimensional residual 
network 
1.2.1 Dynamic convolution 

Dynamic convolution is a method proposed by 
Chen et al. to aggregate multiple parallel convolution 
kernels of the dynamics according to the attention 
mechanism. Compared with the traditional static 
convolution layer, dynamic convolution does not use a 
single convolution kernel on each layer but adaptively 
adjusts the size of the convolution kernel according to 
samples of different sizes. 

The parameters of the traditional perceptron do not 
change when the model runs, and the results are as 
follows: 

 ( )Ty g W x b= +   (4) 
where x and y represent the input and output respectively, 
g is the activation function, WT is the transpose of the 
weight matrix, and b is the bias vector. 

The dynamic perceptron updates the assigned 
parameters by integrating multiple linear functions 
T

k kW x b+   as follows: 
 ( ( ) ( ))T

ky g W x x b x= +   (5) 
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where K is the number of integrated linear functions, πk(x) 
is the attention weight of the k th integrated function 
generated,  kW  and kb  are the weight matrix and bias 
vector of the k th integrated function, respectively, and  
WT(x) and ( )kb x represent the weighted weight matrix 
and weighted bias vector, respectively. 
1.2.2 Multi-dimensional residual network 

ResNeXt[8] is an improved network based on 
ResNet[9], which adds a branching structure to the ResNet 
network model and divides the number of convolution 
kernels of the ResNet network into several groups, thus 
increasing the width of the residual network, but does not 
increase the parameters and computation of the network. 
ResNeXt The basic module is shown in Fig.1. 

ResNeXt Network split-conversion-merge form can 
be expressed as: 

 1( ) ( )c
i iR x T x==   (7) 

where Ti is the same topology, c is the number of 
identical branches in a module, c is usually called the 
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cardinality, and the value of c can be any integer. 
ResNeXt The network can learn the spatial 

characteristics of signals deeper and improve the model 
performance with a multi-scale structure. After 
extracting the signal features from the ResNeXt model, 
the vector is flattened to one dimension by the global 
average pooling. Finally, using the Softmax function of 
the fully connected layer, the output is transformed as 
below to complete the fault diagnosis of the precision 
machining equipment. 

 

 
 

Fig.1 ResNeXt network module 
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where: P(i) is the probability value of the i th sample, 
and 0< P(i) <1. 

In order to improve the generalization performance 
and feature extraction ability of ResNeXt network model, 
this paper increases the number of ResNeXt network 
layers to 50 layers, as shown in Fig.2, the number of 
branches is increased to 32 groups, and the number of 
convolution cores in each group is 4 (32×4d). 

 

 
 

Fig.2 ResNeXt-50 network structure diagram 
 

Compared with the conventional ResNet network, 

the depth and width of the model are enhanced, but due 
to the branching structure, the number of parameters of 
the model does not increase, and the number of ResNeXt 
network layers is increased to 50 layers, and the feature 
extraction ability of the model is further enhanced. 
1.2.3 Improvement of multi-dimensional residual 
networks 

In order to make full use of the powerful feature 
extraction ability of the dynamic convolutional kernel 
and extract more effective fault features, the dynamic 
convolution kernel is introduced into the 
multi-dimensional residual network, so that the original 
ResNeXt network has the profound feature extraction 
ability. The residual block structure embedded in the 
dynamic convolutional kernel is shown in Fig.3. In order 
to give full play to the effect of the dynamic convolution 
kernel, the dynamic convolution kernel is added to the 
output and branch structure of each layer of the network, 
so as to increase the feature extraction ability of the 
ResNeXt network. 

 

 
 

Fig.3 For the improved ResNeXt residual blocks structure 
 

2 Experimental design 
2.1 Composition of the experimental platform 

In order to verify the proposed model in the complex 
environment of precision machining equipment fault 
diagnosis reliability, the experiment selection on high 
precision processing equipment inadvertently lathe[10], the 
working principle is the motor with the hollow shaft 
rotation, and then drive the front cutter high-speed rotation, 
to complete the wire cutting processing, structure as shown 
in Fig.4 (a). Install two acceleration sensors to the front and 
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rear bearings and arrange the sensors as shown in Fig.4 (b). 
The signal acquisition instrument collected the vibration 
signal, the cutting speed was selected as 480 r/min, the 
cutting depth was selected as 0.6 mm, and the sampling 
frequency was set as 8192 Hz. 

 

 
 

(a)Unintentional lathe structure 
 

 
 

(b)Sensor point position 
 

Fig.4 Experimental platform 
 

2.2 Different fault implantation methods 
In the daily processing production, the most 

common fault is the front clip too tight and the knife tip 
is not consistent. The front clamping will cause the 
workpiece to be tightly squeezed tightly by the front 
clamping roller. When the workpiece is pressed, the 
running state of the workpiece in the feeding process is 
volatile, which leads to abnormal vibration. As shown in 
Fig.5, the front clip pressure gauge shows the tightness 
of the front clip. For the overtight fault before 
implantation, increase the pressure of the front clamp 
roller by adjusting the front clamp pressure control 
button on the control panel. 

 

 
 

Fig.5 Fault implantation experiment with the inconsistent 
protruding length of the knife tip 

The method of implantation is to add a metal sheet 
of 0.17mm thickness to the no. 4 tool, as shown in Fig.6. 
When the length of the knife tip is not consistent, the 
cutting force of the four knives will not be consistent, 
and the cutting is easy to produce large vibration, thus 
affecting the cutting quality. 

 

 
 

Fig.6 Fault implantation experiment with the inconsistent 
protruding length of the knife tip 

 

2.3 Data preprocessing 
Data preprocessing mainly contains two parts: 

generating feature maps and image fusion. For 
one-dimensional acceleration vibration signal data, this 
paper uses the overlap sampling method to expand the 
data set sample, that is, there is an overlap between the n 
th segment sample and the n+1 segment sample. The 
relationship between the length, step length and the total 
number of samples is shown in Equation 9. 

 1N Samplen
stride
−= +   (9) 

where N represents the length of the acceleration 
vibration signal for a certain fault state, n represents the 
total number of the samples available, stride represents 
the length of the overlapping sampling, and Sample 
represents the length of each segment. On the length 
selection of each segment, the selected sample length is 
1024, the number of overlapping sampling is 512, the 
acceleration vibration signal length of each fault state is 
122880, the number of each fault sample generated by 
overlapping sampling method is 500, and the size of 
feature image is 128×128. The characteristic diagram of 
each fault state is shown in Fig.7. 

 

 
 

The tip of the knife        The front clip is           Normal 
is inconsistent             too tight 

 
Fig.7 Characteristic pattern 

 
It can be seen from the figure that the 

two-dimensional time-frequency feature map generated 
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by the unintentional lathe fault experimental data cannot 
see the large difference. Therefore, it is necessary to use 
the deep learning method to identify further and extract 
the feature of the unintentional lathe fault feature map. 

2.4 Fault process based on CWT and improved 
ResNeXt 

The fault diagnosis process of precision machining 
equipment based on CWT and improved ResNeXt is 
shown in Fig.8. The specific steps are described as follows. 

(1) Signal preprocessing: convert the unintentional 
lathe acceleration vibration signal data set sample into 
CWT feature map, and divide the test set sample and the 
training set sample to prepare for the subsequent model 
training and testing. 

(2) Model design and training: set up relevant 
network parameters such as learning rate, optimizer and 
loss function according to the pre-build of the improved 
ResNeXt network model. The training set sample input to 
the model forward propagation path in the loss error, 
determine the error meet the requirements, if not meet the 
error backpropagation, adjust the network parameters, If 
the model training parameters are satisfied, the model is 
trained and tested. 

(3) Fault classification identification: after the 
improved multi-dimensional residual network model 
proposed in this paper is trained, the test set is input into 
the trained network to identify the faults of the test 
samples, and the fault classification accuracy is finally 
obtained. 

 

 
 

Fig.8 Fault diagnosis process based on CWT and improved ResNeXt 
 

3 Analysis of the experimental results 
3.1 Effect of small wave groups 

The wavelet basis function is crucial to the image 
generation quality of the feature map[11], choosing the 
appropriate wavelet basis function can increase the 
signal-to-noise ratio of the feature map and make the 
image clarity higher. The complex wavelet basis function 
can consider both the amplitude frequency characteristics 
and phase frequency characteristics, so the complex 

wavelet base ComplexMorlet is chosen as the parent 
wavelet. The basic form of this wavelet is cmorfb-fc 
(where fb is the bandwidth width and fc is the center 
frequency). In order to obtain the best feature map, 6 types 
of ComplexMorlet wavelet are taken as candidates, as 
shown in Table 1. 

In order to compare the quality of feature graphs 
generated by different wavelet basis functions, sample 
feature graphs generated by 6 wavelet bases were input 
into the improved multidimensional residual network 
and trained for 20 times. The accuracy obtained was 
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shown in Fig.9. 
 

Table 1 9 wavelet base candidates 

Number Wavelet base type Wavelet basis 

1 Cmor Cmor1-1 

2 Cmor Cmor2-2 

3 Cmor Cmor3-3 

4 Cmor Cmor4-4 

5 Cmor Cmor5-5 

6 Cmor Cmor6-6 
 

 
 

Fig.9 Line plot of the results of different wavelet base experiments 
 

It can be seen from the figure that the fault 
classification accuracy of the Cmor 3-3 wavelet basis 
function is the highest, so the Cmor 3-3 wavelet basis 
function is chosen as the wavelet base of the continuous 
wavelet transform. 

3.2 Impact of different pre-trained models 
In order to verify the performance of the proposed 

model in this paper, the three deep learning models in the 
deep learning field are based on the same data set. To 
reduce the influence of chance factors, when dividing the 
training set and the test set, 10 random partitions were 
performed, using each set of data for independent 
training and testing, to record the experimental results 
separately. The results of 10 experiments were used as 
performance evaluation indicators for comparative 
validation, and the specific results are shown in Fig.10, 
and the mean accuracy and standard deviation are shown 
in Table 2. Among them, the accuracy of the 
GoogLeNet[12] model is poor, only reaching 91.92%, 
because the model simply stacks multiple convolution 
layers, and it is difficult to extract complex data features 
effectively. ResNet The residual structure is added based 
on GoogLeNet to realize the cross-layer connection of 
each convolutional layer, and its accuracy is 3.53% 
higher than that of GoogLeNet. DenseNet[13] The dense 
residual connection module is added to realize the dense 
connection of each convolutional layer, and the accuracy 
is 1.5% higher than ResNet. However, the overall 

accuracy is low because the above models use a single 
network structure for feature extraction. 

The method proposed in this paper can fully 
integrate the time-frequency features of the signal and 
extract the fault signals submerged by various noises in 
the complex background. The dynamic convolution 
kernel improves the feature extraction capability of the 
network, and the average test accuracy is 99.40%.The 
above results show that the deep learning model 
proposed here has obvious advantages over several other 
deep learning models. 

 
Table 2 Average accuracy and standard deviation 

Accuracy 
rate /% 

The method 
of this paper GoogLeNet ResNet DenseNet 

Train 99.70±0.15 92.92±0.23 96.58±0.82 97.35±0.09

Test 99.40±0.13 91.92±0.89 95.45±0.53 96.95±0.26
 

 
 

Fig.10 Test accuracy for the ten experiments 
 

3.3 Comparison of different image encoding 
methods 

In order to verify the advantages of using the CWT 
image coding feature map, the following graph coding 
method is compared with the method in this paper. ①: 
Use continuous wavelet transform to convert a 
one-dimensional vibration signal into a time-frequency 
map, and input it to the improved ResNeXt network. ②: 
Convert the one-dimensional acceleration vibration signal 
into a Markov transition field, Markov Change Field 
(MTF) image. ③: THE method of literature[14] is used to 
convert the acceleration vibration signal into the Graham 
Angular Field-gram angle field (GAF) image, and the 
GAF feature image is used as the input to the improved 
ResNeXt network. All the above methods adopt 
overlapping sampling method, and the data are divided 
into training set and test set in a ratio of 4:1, and the image 
size is set to 128×128. Three types of image coding are 
selected, and one fault type is displayed, as shown in 
Fig.11. 
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Fig.11 Three kinds of image encoding methods 
 

Taking the above three images as inputs to the 
network model, it can be seen from Fig.12 that the fused 
CWT feature map has the highest accuracy, with the 
average accuracy of 99.4% after 20 training, while the 
average accuracy of MTF and GAF can only reach 
92.5% and 86.4% after 20 training, respectively. 
Therefore, the above experimental results show that the 
fault diagnosis model of deep learning precision 
machining equipment has high accuracy and stability. 

 

 
 

Fig.12 Experimental results for other image encoding methods 
 

3.4 Fault diagnosis experiment of migration 
across working conditions 

In actual work, the working conditions of the 
unintentional lathe often change, so it is necessary to 
verify the classification accuracy of the proposed fault 
diagnosis model under different working conditions. 
According to different working conditions, the 
experimental data set of centerless lathe is divided into 
three groups, in which working condition A is centerless 
lathe speed 480 r/min, feed speed 0.5 m/min. Under 
working condition B, the speed is 530 r/min. Working 
condition C is speed 580 r/min. In each group of data, 
there were 500 sample data of each component state, a 
total of 1500, and the training set and test set were divided 
according to the ratio of 8 : 2. See Table 3. 

Using source domain data, the constructed model, 
the ResNet model and the ResNeXt model and 
Dy-ResNeXt model .The migration experimental results 
of each model under different working conditions are 
shown in Fig.13.A-B of the data in the figure represents 
the source domain data of the data set with working 

condition A as the data set, and the target domain data of 
the data set with working condition B as the data set. A-C 
indicates that condition A is the source domain of the data set, 
condition C is the target domain of the data set, and so on. 

 
Table 3 No intentional lathe working condition fault 

Fault type normal The tip of the knife 
is inconsistent 

The front clip 
is too tight 

Fault label 1 2 3 

Condition A 500 500 500 

Condition B 500 500 500 

Condition C 500 500 500 

 

 
 

Fig.13 Experimental results across working conditions 
 

In order to illustrate the classification effect of the 
model under cross-working conditions, 80 samples were 
taken as the test set. The experimental results are shown in 
Fig.13. Judging from the classification results in the 
above figure, the proposed methods in this paper have 
higher accuracy than the models obtained by the other 
three methods. Taking source domain data as working 
condition B and target domain data as working condition 
A as an example, the fault identification accuracy of 
Dy-ResNeXt is 99.92%, which is 1.13% higher than that 
of working condition A to working condition B and 9.08% 
higher than that of working condition A to working 
condition C. The accuracy of this model is 1.56% higher 
than that of ResNet model and 1.2% higher than that of 
ResNeXt model. The above models all use a single 
network structure to extract fault features, so the fault 
diagnosis accuracy of precision machining equipment in 
complex environments is slightly low. The proposed 
method can fully extract the feature information of fault 
signals in complex backgrounds, and the dynamic 
convolution kernel is integrated into the ResNeXt 
network to improve the expression ability of the model 
significantly. Therefore, the reliability of the model in 
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fault diagnosis of precision machining equipment under 
complex environment is verified. 

4 Summary 
In view of the working environment of precision 

machining equipment in processing and production is 
very complex and the problem is difficult to identify, this 
paper, a fault diagnosis algorithm (CWT-Dy-ResNeXt) of 
precision machining equipment based on continuous 
wavelet transform and improved multi-dimensional depth 
residual network is combined, and then the effectiveness 
of this method is proved through experimental research. 
The model presented in this paper has the following 
advantages over the other network models. 

(1) With CWT, CWT and the images have time and 
frequency domain features compared with MTF and GAF. 
In addition, the complex wavelet basis function 
ComplexMorlet is used as the parent wavelet, which can 
analyze the characteristics of the signal from the 
amplitude-frequency characteristics and phase frequency 
characteristics of the vibration signal, and select the best 
wavelet base through the comparison of different wavelet 
basis functions. 

(2) ResNeXt has stronger than ResNet generalization 
performance and feature extraction ability, ResNeXt 
network adopts multiple branch structure, under the 
condition of guarantee model parameters do not increase, 
improve training accuracy, dynamic convolution kernel 
can adapt according to the sample size adaptive 
convolution kernel, increased the size of the model in the 
complex environment of precision machining equipment 
the reliability and stability of fault diagnosis. 
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