
INSTRUMENTATION, Vol. 9, No. 3, September 2022  27 
 
 
 
 
 

Pill Defect Detection Based on Improved  
YOLOv5s Network 

AI Sheng1, CHEN Yitao1, LIU Fang1, ZHU Aoxiang2 

(1. School of Mechanical Engineering and Automation, Wuhan Textile University, Wuhan 430200; 

2. Yunmeng County Hospital of Chinese Medicine, Xiaogan 432000) 

Abstract: To address the problems of low detection accuracy and slow speed of traditional vision in the 
pharmaceutical industry, a YOLOv5s-EBD defect detection algorithm: Based on YOLOv5 network, firstly, the 
channel attention mechanism is introduced into the network to focus the network on defects similar to the pill 
background, reducing the time-consuming scanning of invalid backgrounds; the PANet module in the network is 
then replaced with BiFPN for differential fusion of different features; finally, Depth-wise separable convolution 
is used instead of standard convolution to achieve the output Finally, Depth-wise separable convolution is used 
instead of standard convolution to achieve the output feature map requirements of standard convolution with less 
number of parameters and computation, and improve detection speed. the improved model is able to detect all 
types of defects in tablets with an accuracy of over 94% and a detection speed of 123.8 fps, which is 4.27% higher 
than the unimproved YOLOv5 network model with 5.2 fps. 
Keywords: Pill Defect Detection, Channel Attention Mechanism, Differentiation Fusion, Depth-separable 
Convolution 

 
 

1  Introduction 

The production of oral tablets may produce de-
fects such as color, borders, contamination, scratches, 
markings, etc. These defects need to be rigorously tested 
and removed before the tablets are boxed. Current me-
thods used to detect defects in tablets include the least 
squares method[1], the template matching method[2] and 
feature analysis[3], support vector machine method etc. 
Although these algorithms can detect defects, they re-
quire high image resolution and identify individual 
types of defects with low accuracy and slow speed. 

Deep learning-based defect detection is widely 
used in steel, bridges, PCB boards, and other objects[4]: 
Li improved the YOLO network to achieve 97.55% 
mAP and 95.86% recall for the detection of small de-
fects on steel surfaces[5]; The YOLOv3 method was used 
by Zhang to detect bridge defects and improve the de-

tection accuracy through migration learning[6]; Li used 
the YOLOV4 method to detect surface defects on PCB 
boards and used clustering to obtain a better prior frame 
and improve detection accuracy[7] . Current YOLOv5 has 
higher detection accuracy and speed, and greater flexibil-
ity. Among them, YOLOv5s network has smaller models 
and faster detection speed in the detection scenario, which 
is more suitable for defect detection of oral tablets. 

Aiming at the current situation and characteristics 
of oral tablet defect detection, this paper proposes a 
YOLOv5s-EBD defect detection algorithm: introduc-
ing a channel attention mechanism in the network to 
improve the detection accuracy of defects similar to the 
background; using BiFPN instead of PANet module on 
the neck network, fusing PANet deep and shallow 
feature layers in both directions to enhance the infor-
mation transfer between different layers and improve 
the detection of the algorithm accuracy; and later using 
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depth-separable convolution to replace the standard 
convolution module, which can reduce the number of 
parameters and computation in the model and improve 
the detection speed. 

2  Introduction of the YOLOv5 Network 

The YOLOv5 network consists of a Backbone, a 
Neck and a Head[8]: The Backbone is used for 
fine-grained aggregation of different images to form 
image features; the Neck is used to enhance the fea-
tures of different feature layers and to pass the fea-
tures from bottom to top to the output; the Head is 
used for image prediction, generating bounding boxes 
and prediction categories, where the three prediction 
heads are responsible for predicting small, medium 
and large image targets[9]. The CBL module is a 
standard convolution layer, consisting of a convolu-
tion layer (Conv), Normalized layer (BN) and an 
activation function (Relu)[10]. The CSP module per-
forms the convolution so that the number of channels 
is halved. This module mainly divides the feature map 
into two paths, one passing through the CBL module 
and Resunit module for further convolution, and the 
other directly convolution the two parts, which are 
finally stitched together by Concat to continue down 
the execution[11]. The YOLOv5 network framework is 
as shown in Fig.1. 

3  YOLOv5s Network Improvements 

3.1  Introduction of the Attention Mechanism 
Module 

The YOLOv5s network is prone to false detection 
and over-detection of defect less regions for defects that 
are similar to the background of the pill. To address this 
problem, a channel attention mechanism network 
(ECANet) was introduced[12] that allows valid features 
to be focused on and invalid features to be suppressed. 

The attention mechanism is as shown in Fig.2. 
The average feature map (1×1×C) is obtained by first 
using global average pooling (GAP) for each channel 
of the input feature map (W×H×C); then the 
1-dimensional convolution is used to interact across 
channels (the size of the convolution kernel k is de-
termined by the adaptive function), so that the number 
of channels in a larger layer can interact more across 
channels, and the sigmoid function is used to find the 
channel weights of the feature map; finally, the weights 
of each channel and the original input feature map are 
multiplied channel by channel to produce a weighted 
feature map, where different colors represent channels 
with different weights[13] .The network focuses on the 
channels with higher weights. The network focuses on 
the channels with higher weights. (where the k-value is 
calculated as shown in equation 1, where γ= 2 and b=1, 
C is the channel dimension). 

 

 
 

Fig.1  YOLOv5 Network Framework 
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Fig.2  The Attention Mechanism Process 
 

2log ( )( ) C bk C
γ γ

= Ψ = +        (1) 

The best detection performance was found by 
placing the attention mechanism ECANet behind the 
CSP1-3 module in Backbone and the Concat module 
in Neck. The improvements in Backbone are as shown 
in Fig.3 and in Neck see YOLOv5s-EBD improve-
ment figure. 

 

 
 

Fig.3  Introduction of Attention  
Mechanism in Backbone 

 

3.2  Introduction of the BiFPN Module 

The YOLOv5 network simply uses the Concat 
module in PANet to superimpose the feature maps 
without differentiating the features, resulting in its 
detection accuracy being compromised. The introduc-
tion of the weighted fusion mechanism BiFPN [13], 
which enhances higher-level feature fusion in 
processing paths, treats each bi-directional path as a 
feature network layer, learns the importance of dif-
ferent input features and performs differentiated fusion 
of different features[14]. 

Fig.4(a) shows the PANet module used in YO-
LOv5, which adds a bottom-up path fusion to the FPN 
so that the lower layer has higher semantic information 
while the upper layer gets higher positional informa-
tion. The features are guaranteed to have both high 
positional information (for defect localisation) and 
semantic information (for defect classification). 
Fig.4(b) shows the BiFPN module, which has four 
improvements over PANet: firstly, the node with only 
one input edge is removed, which has little contribu-
tion to the fusion of different features, and its removal 
has little impact on the network, while simplifying the 
network model; secondly, without increasing the 
number of input nodes, the node leads from the input 
node to the output node in the same layer, ensuring 
that more features can be fused with less computation. 
Third, the BiFPN bidirectional path can be repeated 
many times, and the number of uses is calculated 
using NAS to add values to the network for adjust-
ment to achieve better fusion of higher-level features; 
Fourth, the importance of learning different features 
is differentiated for different input features to be 
fused[15]. 

 

 
 

Fig.4  Improved Feature Fusion 
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From Fig.3 to Fig.7, they are the five effective 
feature layers extracted from the backbone network, 
with the arrows pointing to the upper and lower fusion of 
features. The fusion process sets weights to each node to 
balance the features at different scales. The thick arrow 
route indicates the top-down conveying high-level se-
mantic information, while the thin arrow route indicates 
the bottom-up conveying low-level location information. 

BiFPN adds additional weights to each input 
feature with the weighted fusion method shown in 
equation (2). 

i
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where w  represents the weight parameter learned 

during the fusion process. The activation function is 
used so that iw  ≥ 0, and ε is a small amount that keeps 

the value stable and has a value of 0.0001. Using P6 as 
an example, the calculation of cross-scale connectivity 
and weighted feature fusion in BiFPN is shown in 
equations (3) and (4). 
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Where 6
tdP  is the middle layer of the P6 feature 

fusion process, 6
inP  and 6

outP  are the input and output 

features of P6 respectively. Conv denotes the convo-
lution process and resize denotes the up-sampling or 
down-sampling operation. The introduced BiFPN 
module mainly replaces the Concat module in Neck. 

3.3  Introduction of Depth-separable Convo-
lution Modules 

In the industrial deployment of the pill defect 
detection model, the large model of the standard con-
volution can lead to slow industrial deployment and 
affect the speed of pill defect detection. Therefore, the 
standard convolution in the original network is replaced 
with a depth-separable convolution, which consists of 
Depth-wise Convolution for spatial filtering and 
Point-wise Convolution for feature generation[16-17]. 

3.3.1  Standard Convolution 
Standard convolution directly selects the convo-

lution kernel based on the output feature map, the flow 
is as shown in Fig.5. For example, for a 5*5*3 input 
feature map, if you want to get a 3*3*4 output feature 
map, you can directly use the 3*3*3*4 convolution 
kernel to convolution. 

 

 
 

Fig.5  Standard Convolution 
 

The number of standard convolution parameters 
and the amount of computation are calculated as shown 
in equations (5) and (6) [18]. 

_ W HN std D D M N= ⋅ ⋅ ⋅    (5) 

_ ( 1) ( 1)W H W W H HC std D D I D I D M N= ⋅ ⋅ − + ⋅ − + ⋅ ⋅  (6) 

where _N std  and _C std  represent the number 

of parameters and computation of the standard con-
volution; DW and DH represent the width and height of 
the convolution kernel; M and N represent the number 
of input and output channels; IW and IH represent the 
width and height of the input feature layer[19]. By feed-
ing the data in the example into the above equation, the 
number of standard convolution parameters _N std  is 

108 and the amount of computation _C std  is 972. 

By the data in the example into the above formula, 
the number of standard convolution parameters _N std  

is 108 and the amount of computation _C std  is 972. 

3.3.2  Deeply Separable Convolution 
The convolution first convolves each channel of 

the input feature map by depth-by-depth convolution, 
which does not change the depth of the feature map, 
and then increases the dimension of the input feature 
map by point-by-point convolution to obtain the same 
output feature map. As with the standard convolution 
example, for a 5*5*3 input feature map, a 
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depth-by-depth convolution of 3*3*3 kernels is used, 
followed by a point-by-point convolution of 1*1*3*4 
kernels to obtain the same output feature map. The 
flow is as shown in Fig.6, with the depth-by-depth 
convolution flow on the left and the point-by-point 
convolution flow on the right.  

 

 
 

Fig.6  Deeply Separable Convolution 
 

The depth separable convolution number of pa-
rameters and the amount of computation are calculated 
in two parts, and the formulae are shown in (7), (8), (9) 
and (10). 

1 1_ W HN Dd D Mw = ⋅ ⋅         (7) 

1 1 1 1_ ( 1) ( 1)W H W W H HC D D I D Id D Mw= ⋅ ⋅ − + ⋅ − + ⋅   (8) 

2 2_ W HN Mw D D Np = ⋅ ⋅ ⋅    (9) 

2 2_ W H W HC D D I Mp Iw N= ⋅ ⋅ ⋅ ⋅ ⋅     (10) 

where w_N d  and _C dw  are the number of pa-

rameters and computations for the deep convolution,

_N pw and _C pw are the number of parameters and 

computations for the point-by-point convolution; DW1 
and DH1 are the width and height of the deep convolu-
tion kernel, DW2 and DH2 are the width and height of the 
point-by-point convolution kernel, and IW and IH are 
the width and height of the input feature layer[20]. By 
substituting the data in the example into the above 
formula, the number of the number of depth-by-depth 
convolution parameters _N dw  as 27 and the compu-

tation _C dw  as 243, and the number of point-by-point 

convolution parameters _N pw  as 12 and the com-

putation _C pw  as 108. 

It can be seen that the total number of deeply 
separable convolution parameters is 39, and the total 
calculated amount is 351, which are about 1 / 3 of the 
standard convolution. By using the depth-separable 
convolution instead of the standard convolution in 
CBL-3 and CBL-4, the network model can be reduced 
and the speed of defect detection can be improved, 
which is more conducive to the deployment of the 
algorithm model in industrial scenarios. 

After implementing the above three methodologi-
cal improvements, the YOLOv5s-EBD model was ob-
tained. The framework diagram is as shown in Fig.7 
where the dark gray modules are the improved modules. 

 

 
 

Fig.7  YOLOv5-EBD Network Framework 
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4  Data Processing and Training 

4.1  Data Processing 

A vision acquisition system was set up on the 
tablet exit belt line at the pharmaceutical site. A Hik-
vision (MV-CS200-10GC) camera was used to take 
pictures of the tablets on the belt line for storage, en-
suring that only one tablet was taken at a time by using 
light sources to fill in the light and controlling the flow 
rate of the tablets. After several months of on-site ac-
quisition 53,800 pictures were obtained. From these, 
1835 defect data were selected according to the phar-
maceutical company's inspection quality requirements, 
including five categories of defects such as colour, 

borders, scratches, contamination and marks. In order to 
reduce training time and adapt YOLOv5s to network 
detection, the resolution of the collected images was 
cropped to 640 × 640. In order to improve the generali-
zation capability of tablet defect detection, the data en-
hancement methods such as panning, flipping, scaling, 
changing colour difference and colour temperature were 
used to expand the images to 6400 in order to improve the 
generalization capability of tablet defect detection, see 
Table 1. Before network training, the defect data were 
randomly divided into 7:2:1 into three data sets, see Table 
2. After the data was divided into three datasets, the 
labeling software LabelImg was used to manually label 
the location and type of defects, and the various types of 
defect labeling data are as shown in Fig.8. 

 

Table 1  Defective Picture Statistics 

Entry Colour 
Pollution 

Boundary  
Defects 

Pharmaceuticals 
Pollution 

Scratches 
Defects 

Imprint 
Defects 

Mixed 
Defects 

Original Data Set 256 332 234 295 146 572 

Extended Data Sets 1054 1096 1042 1076 1021 1111 
 

Table 2  Dataset Statistics 
Entry Train Validation Test 

Data Category 4480 640 1280 
 

 
 

Fig.8  Defect Labeling Data 
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4.2  Data Training and Testing 

Data training and testing process is as shown in 
Fig.9 before training, the network parameters were set: 
the initial learning rate was set to 0.001 and decayed by 
10% every 30 iterations; the SGDM gradient optimi-
zation algorithm was used, the momentum was set to 
0.9, the decay factor was 0.0005, the batch size was 8, 
and the training Epoch was 200. [21] The training Epoch 
is 200. The YOLO network is then adjusted by using 
the loss function Loss to calculate the loss between the 
predicted value and the true value. The network de-
cides whether to continue training based on the Epoch 
value, and the conditions are met to obtain the best 
weight file for data testing. In the testing process, the 
test images are fed into the trained YOLO network at to 
obtain defect images with a large number of predictor 
frames, which are then filtered using non-maximal 
suppression (NMS) to obtain the best defect detection 
image. 

5  Evaluation Indicators and Test Results 

5.1  Evaluation Indicators 

In order to better detect tablet defects and to 
evaluate the performance of the detection model, five 
metrics were selected for evaluation: Precision, Re-
call, precision (AP), average precision (mAP) and F1, 
which are calculated as shown in (11), (12), (13), (14), 
(15). 

100%
TP FP

TPPrecision = ×
+   (11) 

TPRecall 100%
TP FN

= ×
+    (12) 

1

0
( )AP p r dr=     (13) 

1 (c)C
c APmAP

C
=

=
 
  (14)

 

1
2 ecallF R Precision

Recall Precision
× ×=

+   (15) 

where AP is the mean single defect accuracy 
value, while mAP is the mean of all APs and C is the 
number of detection categories. F1 is used for the 
harmonic average of precision and recall, giving more 
weight to important values. 

The training results obtained by training the de-
fective data in the test set with the improved YO-
LOv5s-EBD model are as shown in Fig.10. The overall 
recognition accuracy exceeds 0.8, and the recall and 
average precision are close to 1.0. 

5.2  Test Results 

5.2.1  Results of Testing for Various Types of Defects 
In order to verify the effectiveness of the im-

proved model in detecting various types of defects, the 
data of 1280 pill defects in the test set were tested. The 
detection results for each defect are shown in Fig.11 
and the statistics of the detection results for different 
defects are shown in Table 3. 

 

  
 

Fig.9  Training and Testing Process 
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Fig.10  Training Results Data 
 

 
 

Fig.11  Tablet Defect Detection Display 
 

Table 3  Statistics for Different Defect Detection Results 

Tags Colour 
Defects 

Boundary 
Defects 

Contamina-
tion Defects 

Scratch 
Defects

Impression 
Defects

False 
Detection

Precis 
ion (%) 

Recall 
(%) 

AP 
(%) F1 

Colour Defects 216 1 3 1 1 7 94.32 92.3 94.18 0.93

Boundary 
Defects 1 277 2 5 0 2 96.51 95.18 95.82 0.95

Contamination 
Defects 4 2 237 1 2 4 94.8 93.3 94.45 0.94

Scratch Defects 2 5 2 264 4 3 94.28 92.31 94.03 0.93
Impression 

Defects 0 0 1 4 202 5 95.28 93.95 95.21 0.94

Not Detected 11 6 8 11 6      
Average       95.04 93.41 94.74 0.94
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Table 3 shows that the detection accuracy of the five 
types of defects is above 94%, and there are relatively few 
misclassifications among each other, and more focus on 
their respective missed detection. Among them, the Pre-
cision and Recall values of boundary defects and imprint 
defects are higher, which is because the areas where they 
appear are relatively fixed, and the defect features are 
easier to detect. The relatively low Precision and Recall 
values of color defects and scratch defects, resulting in 
low AP and F1 values, are due to their unfixed defect 
locations, large shape randomness, and large size differ-
ences, which make the detection more difficult. 
5.2.2  Test Results for Each Detection Model 

To further illustrate the detection performance of 
this improved model in this study, comparative expe-
riments were conducted between the improved model 
and other single-stage target detection models, in-
cluding YOLOv4, YOLOv5s, YOLOv5m and SSD. 
All other conditions were the same in the experiments, 
and the results are shown in See Table 4. 

 
Table 4  Experimental Results for Different Models 

Models Precision 
(%) 

mAP 
(%) 

Params 
(MB)

FPS 
(fps)

SSD 84.23 83.43 99.4 42.8

YOLOv4 90.23 90.14 246.7 46.3

YOLOv5s 91.16 90.61 14.2 118.6

YOLOv5m 92.90 92.32 41.6 96.8

YOLOv5s-EBD 95.04 94.74 12.4 123.6

 
In the table, Params is the number of network pa-

rameters and FPS is the image processing speed of the 
model. By comparing the five groups of experimental 
results in Table 4, the improved YOLOv5s-EBD model in 
this paper is superior to other models in all evaluation 
indicators. In particular, the advantages are most obvious 

compared with the SSD model. Compared with the un-
improved YOLOv5s model, the accuracy and average 
precision are improved by more than 3%, and the model 
is smaller, easier to deploy in the production line, and has 
faster detection speed. 
5.2.3  Test Results for Each Improvement Indicator 

In order to verify the importance of each module, 
four sets of experiments are set up for comparison. 
They are the unmodified YOLOv5s model, the YO-
LOv5s-E model with the introduction of the attention 
mechanism ECANet, the YOLOv5s-EB model with 
PANet replaced by BiFPN in YOLOv5s-E, and the 
YOLOv5s-EBD model. Other conditions were the 
same for all four sets of experiments and the results 
obtained are shown in Table 5. 

By comparison of YOLOv5s and YOLOv5s-EB in 
the table shows that although the improved model im-
proves AP, mAP and F1 by 4.31%, 4.18% and 0.04 
respectively, it also leads to an increase in the number of 
model parameters, a decrease in image processing rate 
and an overall performance impact. The introduction of 
the depth-separable convolution improvement, reduced 
the model size to 12.4 MB and increased the FPS to 
123.8 fps. The three improvements resulted in a signif-
icant improvement in all metrics of the YOLOv5s-EBD 
compared to the YOLOv5s model. 

6  Conclusion 

In this paper, deep learning techniques are applied 
to pill surface defect detection, and an improved 
YOLOv5s-EBD model is proposed. The channel at-
tention mechanism is introduced in the network, and 
the PANet in the network is replaced with a BiFPN 
module to make the network focus more on the defect 
features and improve the detection accuracy of the 
network; later, the size of the network model is reduced 

 
Table 5  Statistics on the Results of the Four Experimental Groups 

Models ECANet BiFPN DSC AP(%) mAP(%) F1 Params(MB) FPS (fps) 
YOLOv5s    91.11 90.61 0.91 14.2 118.6 

YOLOv5s-E +   93.36 92.83 0.93 21.3 109.4 
YOLOv5s- 

EB + +  95.42 94.79 0.94 27.5 102.3 

YOLOv5s- 
EBD + + + 95.38 94.74 0.94 12.4 123.8 
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through convolution replacement to improve the defect 
detection speed. After experimental testing, the AP was 
95.38%, F1 was 0.94, mAP was 94.74% and FPS was 
123.8fps. The improved model in this paper can effec-
tively achieve defect localization and identification. 
Compared to the original YOLOv5s model, AP, mAP, 
F1 and FPS were improved by 4.27%, 4.13%, 0.03 and 
5.2fps respectively. The model is also applicable to 
other tablet defect detection in the industry. 
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