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Abstract: A local path optimization model and obstacle avoidance strategy based on Actor-Critic algorithm is 
proposed for the local obstacle avoidance problem of automatic guided vehicles in a complex workshop environ-

ment. In the complex working environment of the production workshop, we analyze the automatic obstacle avoidance 

problem of AGV trolley, establish the front and both sides of the AGV tentacle model and Markov decision process, 

and describe the local obstacle avoidance path in the form of virtual tentacles. And based on deep reinforcement 

learning to solve the path obstacle avoidance strategy, it is applied to the AGV self-navigation system. The dynamic 

obstacle avoidance performance of AGV is tested through simulation experiments, and the effectiveness of the 

proposed algorithm is verified by completing local obstacle avoidance path planning under global path guidance. 
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1  Introduction 

Automated Guided Vehicle (AGV), as an impor-
tant branch of mobile robots, has been widely used in 
the storage industry, manufacturing workshops, out-
door hazardous locations and other fields. In manu-
facturing workshops, the factory layout is complex and 
variable, and the operating environment of AGV is 
very complicated, which has higher requirements on 
their dynamic obstacle avoidance capability [1]. 

Artificial potential field is a more mature algorithm 
in local path planning research[2]. The algorithm con-
structs an artificial potential field in which the obstacles 
encountered during vehicle motion exert repulsive 
forces on the vehicle and the target point exerts gravita-
tional forces on the vehicle, thus abstracting the envi-
ronmental information into repulsive and gravitational 
fields. However, when the vehicle travels on narrow 
roads, it tends to sway or oscillate in the passage, which 
prevents the vehicle from reaching the desired location. 

With the rapid development of machine learning, 
methods that combine deep reinforcement learning 
with traditional local path planning can show advan-
tages when solving the above problems[3]. Reinforce-
ment learning-based control methods can iteratively 
optimize the control strategy in interaction with the 
controlled system without the need to build an ac-
curate mathematical model of the controlled object [4]. 
However, the existing method takes whether the AGV 
reaches within a certain range of the target point as the 
basis for the end of obstacle avoidance, without con-
sidering the impact on the subsequent operation, and 
the trajectory needs to continue to be adjusted to bring 
the AGV back to the global path after the end of ob-
stacle avoidance, which will affect the overall opera-
tion efficiency. 

Based on the existing algorithms, this paper 
proposes a tentacle algorithm combined with deep 
reinforcement learning[5], establishes the tentacle 
model and Markov decision process for the front and 
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both sides of the AGV, and analyzes the AGV obstacle 
avoidance problem while considering the guiding role 
of the subsequent path direction. Finally, simulation 
experiments are conducted to verify the effectiveness 
of the proposed method[6]. 

2  Modeling Front-end Tentacles 

In the production workshop, the workshop aisle is 
complex and changeable, in order to ensure that the 
AGV in the safe operation of the premise of the highest 
possible operating efficiency, then the local obstacle 
avoidance ability has higher requirements. Driving in 
the production plant, when the AGV detects obstacles 
in the front side and left and right sides of the area[7], it 
starts to carry out local obstacle avoidance path plan-
ning. Local obstacle avoidance needs to meet the fol-
lowing requirements: First, the AGV does not collide 
with obstacles during operation, that is, in every mo-
ment of the obstacle avoidance process t , The AGV 
has for any obstacle Dr∩Dobs=Ø, Dr indicates the area 
where the AGV body is located. Dobs is the area where 
the obstacle is located. Second, AGV do not collide 
with obstacles during operation. The requirement of no 
collision is expressed as follows: during obstacle 
avoidance, the AGV has no collision with any obstacle 
Dr∩Dedge=Ø, Dr indicates the geometry of the AGV. 
Dedge Indicates the edge area on both sides of the aisle. 

 

 
 

Fig.1  Virtual Touch Design 

2.1  Virtual Touch Design 

The virtual reach is a part of the area defined within 
the detection range of the obstacle avoidance sensor, 
which is designed to facilitate the expression of obstacle 
information in the front and both sides of the vehicle, 
and to reduce the amount of computing by processing 
only the environmental data within the virtual reach[8]. 
The virtual reach design is shown in Fig.1, where o for 
the AGV body mass center. Dr (Lr×Wr) indicates the 
area where the AGV is located. 

Where the grid line area Ds (Ws×LD) It is called 
the collision zone, which is used to indicate whether 
the vehicle body is likely to collide with the obstacle 
when it continues to travel along the current direction, 
and indicates that a collision will occur when the ob-
stacle exists in this zone when it continues to travel 
along the current direction. In order to avoid an-
ti-generated collision due to sensor error and other 
reasons, so Ws the design should be slightly larger than 
the width of the car body Wr. 

2.2  Virtual Tentacle Design 

As shown in Fig.2, the tentacle map is circular, 
starting from the center of mass of the vehicle body, and 
extending the tentacle map to the two regions on the left 
and right bounded by the body directly in front and 
opposite to each other[9]. The tentacle map represents the 
current candidate planning road, and the gap occupied 
by the vehicle and virtual tentacles at each point on the 
current candidate planning road is virtualized at a certain 
moment, and it is determined whether there is any 
overlap with the obstacle parts, and the turn path selec-
tion is carried out comprehensively. 

 

 
 

Fig.2  Virtual Tentacle Distribution State Diagram 



INSTRUMENTATION, Vol. 9, No. 4, December 2022  13 
 
 
 
 
 

AGV may encounter situations when performing 
local obstacle avoidance path planning. First, the colli-
sion zone in the virtual reach intersects with the edge 
area of the aisle, indicating that continuing to move 
along this route will result in the vehicle intersecting 
with the aisle, and a negative reward should be given 
when designing the reward function[10]. Second, both the 
collision zone and the warning zone in the virtual horn 
do not intersect with the obstacle and the aisle, indicat-
ing that it is safe to continue to move along this route, 
and a positive reward should be given. Third, the 
warning area in the virtual tentacle intersects with the 
obstacle, which indicates that it is safe to continue to 
move along this route without collision for the time 
being but cannot guarantee safety from the obstacle[11]. 
Fourth, the collision zone in the virtual horn intersects 
with the obstacle, which indicates that continuing to 
move along this route will lead to a collision between the 
car and the obstacle, and a negative reward should be 
given in the design of the reward function. 

2.3  Global Path Guidance Constraints 

In the local obstacle avoidance path planning, if 
only bypassing obstacles is planned as a constraint, the 
AGV may deviate significantly from the global path or 
travel along the direction opposite to the global path. 
To solve this problem, this paper adds global path 
guidance as a constraint to the local obstacle avoidance 
path planning process. 

Select a point from the global path ptarget as the 
target point for local path planning, while picking the 
next adjacent point in the global path p′target. Use these 
two points to construct the global guidance vector; use 
the current AGV position point o and the target point 

ptarget. Build o targeto p= −

ξ  is the position vector. At 

the next moment, the position vector of the AGV body 

is given by o


ξ  Changed to o′


ξ  The amount of 

change is o ooΔξ ′= −
  

ξ ξ . 

The selected local path target point may be too 
close to or overlap with the obstacle, so in determining 
whether the AGV has completed the obstacle avoid-
ance task, the position of the AGV under the global 

path guidance should reach or have crossed the local 
path target point as the basis for determination. 
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3  Markov Decision Process Construction 

When AGV act as intelligent bodies, they need to 
sense the state of the environment to make decisions. 
The control process is expressed as a Markovian deci-
sion process. MDP can be represented as a quaternion 
array (S, A, P, R), Among them. S is the intelligent body 
state space., A is the intelligent body action space., P is 
the state transfer function, R is the reward function. 

3.1  State Space 

The AGV can sense the obstacle information in 
real time through the laser scanner installed in the front 
of the vehicle. Sobs, The navigation module can obtain 
its own position information in real time So, Sedge for 
road information such as the width and shape of the 
aisle in which the AGV is currently located, if known.

target


ξ  is the global path information. The state space is

obs dge target[ ]o eS S S S=


、 、 、ξ . 

3.2  Action Space 

The action space is the control command for AGV, 
in the local obstacle avoidance problem that is the local 
obstacle avoidance path of dynamic planning, this 
paper describes the local obstacle avoidance path 
through the form of virtual tentacles[12]. The turn radius 
rk of k the tentacle is expressed as: 

min
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Where, Rmin is the set minimum limit value of 
turning radius, ρ is the setting factor, the value of ρ is 
related to the density of tentacle distribution, the larger 
the value of ρ, the denser the E tentacles. n is the total 
number of tentacles, k is the tentacle number. 

The action space is A=[ Rmin、ρ、n、k、stop], where 
stop is the stop signal. 
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3.3  Reward Functions 

The goal of local obstacle avoidance path planning 
is to complete the obstacle avoidance task under the 
constraints that the vehicle body does not collide with 
the obstacle, the vehicle body does not intersect with the 
edge of the aisle, the local obstacle avoidance path is as 
smooth as possible, and the global path is guided. The 
reward function in this paper is designed as follows: 

n cq DR rr rr= + + +            (3) 
The tangential running reward indicates the re-

ward received by the AGV for moving in the global 
path direction, and when the AGV is backing up, a 
negative reward is given. 

Normal running reward indicates the reward re-
ceived by the AGV when it is approaching or deviating 
from the global path, and the amount of change of the 
path in the global path normal direction is

o o
n n n
td ′Δ = −

 
ξ ξ , When n

tdΔ > 0 it means that the 

AGV deviates from the global path and should be given 
a negative reward. 

Crash Bonus 100c
tr = −  It is the penalty that the 

AGV gets after collision or with an obstacle to guide 
the AGV to avoid the obstacle. 

rD is the bonus value earned for choices made 
during the process of making virtual tentacle path 
selections, calculated as: 
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3.4  Deep Reinforcement Learning Based 
Obstacle Avoidance Strategy Solving 

The local obstacle avoidance path planning 
problem eventually needs to be solved to obtain the 
optimal obstacle avoidance policy, and the state space 
and action space are continuous, and the Actor-Critic 
algorithm in the deep reinforcement learning algorithm 
is used to train the policy. 

Among them, Actor refers to the policy network μθ, 
that is, obstacle avoidance strategy, according to the AGV 

current obstacle information, position and other state 
information S output action A to perform local obstacle 
avoidance path planning, to complete the interaction 
between the intelligent body and the environment. 

           ( )A S Nθμ= +             (5) 

where θ is the policy neural network parameters, 
N is the action perturbation, which is used to better 
explore the environment during the learning process. 
The perturbation function uses a time-uncorrelated, 
zero-mean Gaussian noise, and the perturbation term 
will be removed when testing the strategy network. 

The strategy network estimates the future return q 
of the output action of strategy network μθ through the 
value network, and the strategy neural network para-
meters are updated by the back propagation algorithm 
in the input loss function as follows. 

( , ( ))wq Q S Sθμ=            (6) 

Where w is the value neural network parameter. 
Critic refers to the value neural network Qw. The 

value network learning unit calculates the value q 
through the value network based on the training sam-
ples, and q_target through the target strategy with the 
target value network, which is input to the loss function 
to update the value neural network parameters through 
ack propagation algorithm. 

     _target = + ( , ( ))wq R Q S Sθγ μ′ ′∗       (7) 

the where γ is the reward discount factor, w is the 

target value neural network parameter, and θ  is the 
target strategy neural network parameter. 

The relevant parameters in the algorithm are 
shown in Table 1. 

 

Table 1  Algorithm Parameter Setting 
Parameter Name Parameter Value 

Gamma 0.99 
Learning Rate 0.0001 
Replay Size 300000 

Training Rounds 800 
 

3.5  Obstacle Avoidance Strategy Training 

In this paper, we use Python programming lan-
guage version 3.6 to build a simulation environment to 
simulate AGV operation, and use TensorFlow to build 
an AC algorithm neural network model with AMD 
Ryzen7-4800 processor and Nvidia RTX 2060 graphics 
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card as the system hardware. 
In the training of obstacle avoidance strategy, 

obstacles, the global path of AGV and the initial posi-
tion of AGV are set randomly in each round, and the 
AGV interacts with the environment and uses AC al-
gorithm to train the obstacle avoidance strategy. It also 
serves as a dynamic barrier for other AGV to operate. 
The relevant parameters of the strategy training simu-
lation environment are shown in Table 2. 

 
Table 2  Parameter Settings of Obstacle Avoidance  

Strategy Training Environment 

Parameter Name Parameter Value 

Training Environment Size 10m x 2m 

Global Target Point Location 5M Away from the Start of 
Obstacle Avoidance. 

Obstacle Avoidance Radius 0.5m 

Simulation Update Frequency 10Hz 

 
Based on the constructed simulation environment 

and the algorithm process to train the obstacle avoid-
ance strategy[13], the reward values obtained in each 
round of the training process are shown in Fig.3. From 
the figure, it can be seen that a larger reward can be 
obtained in the late training period and the reward 
value maintains a smooth trend, indicating that the 
algorithm has converged. The distribution and state of 
the obstacles in each round of the strategy training are 
set randomly, so the reward value will fluctuate. 

 

 
 

Fig.3  Strategy Training Reward 

4  Simulation Experiments and Analysis 

In order to investigate the effectiveness of AGV 
local path optimization and obstacle avoidance, this 
paper designs a straight section running and turning 
section running path experiments, in which AGV needs 
to continuously avoid obstacles to complete the oper-
ation. The AGV running path is shown in Fig.4 and 
Fig.5. 
 

 
 

Fig.4  Straight Section Running Path 
 
 

 
 

Fig.5  Turning Section Running Path 
 

 

As shown in Fig.4 and Fig.5, the straight section 
running path and the turning section running test are 
shown respectively, where the straight section test has 
obstacles placed at (x=3, y=-0.58) and (x=6.5, y=0.7), 
and the turning section test has obstacles placed at (x=3, 
y=0.5) and (x=4.9, y=1.8). 

 

The experimental results show that the proposed 
method can plan a safe obstacle avoidance path for the 
AGV, and the planned obstacle avoidance path deviates 
from the global path to a small extent[14], and can find a 
fast path to get away from the obstacle as soon as 
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possible, and the obstacle avoidance process is smooth, 
and the transition of the obstacle avoidance path is 
rounded, and the obstacle avoidance task is completed 
under the premise of ensuring safety. 

5  Conclusion 

This In this paper, we design a local obstacle 
avoidance path planning scheme based on deep rein-
forcement learning for the problem of collision-free 
operation of AGV in complex and variable aisles in 
production workshops. The main research contents in-
clude: analyzing the AGV obstacle avoidance problem in 
the production floor environment, establishing the AGV 
front-end tentacle model and Markov decision process, 
path avoidance strategy based on deep reinforcement 
learning, and applying it to the AGV self-navigation sys-
tem[15]. The dynamic obstacle avoidance performance of 
the AGV is tested through simulation experiments to 
verify the effectiveness of the algorithm, and the expe-
rimental results show that the proposed method can plan a 
safe driving path for the AGV. 
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