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Abstract: Multimodal medical image fusion can help physicians provide more accurate 
treatment plans for patients, as unimodal images provide limited valid information. To address 
the insufficient ability of traditional medical image fusion solutions to protect image details and 
significant information, a new multimodality medical image fusion method (NSST-PAPCNN- 
LatLRR) is proposed in this paper. Firstly, the high and low-frequency sub-band coefficients are 
obtained by decomposing the source image using NSST. Then, the latent low-rank 
representation algorithm is used to process the low-frequency sub-band coefficients; An 
improved PAPCNN algorithm is also proposed for the fusion of high-frequency sub-band 
coefficients. The improved PAPCNN model was based on the automatic setting of the 
parameters, and the optimal method was configured for the time decay factor 𝛼𝑒. The 
experimental results show that, in comparison with the five mainstream fusion algorithms, the 
new algorithm has significantly improved the visual effect over the comparison algorithm, 
enhanced the ability to characterize important information in images, and further improved the 
ability to protect the detailed information; the new algorithm has achieved at least four firsts in 
six objective indexes. 
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1 Introduction 
Medical images are acquired in a myriad of ways. 

Medical images of different modalities convey different 
visual information, but it is difficult for a single modality 
to convey the full information of tissues (MR) or organs 
(CT). The ultimate goal of medical image fusion 
technology[1,2] is to integrate the useful information from 
multiple images into one image, which can help doctors 
analyze medical images in depth, improve the accuracy of 
diagnosis and provide more appropriate treatment plans 
for patients. 

Since the middle of the last century, various medical 
image fusion algorithms[3-6] have been widely used. 
Among them, the multi-scale transform (MST) based 
image fusion scheme has become the preferred research 

direction for many scholars because of its excellent fusion 
performance and good visual perception effect. The NSST 
algorithm proposed in the literature[7] is the result of 
improvement based on retaining the advantages of shear 
wave transform, which avoids the generation of 
pseudo-Gibbs phenomenon, operates with high efficiency 
and low complexity, and details such as edges and 
contours in the source image can be extracted effectively; 
Johnson has developed a pulse-coupled neural network 
(PCNN) model[8-10] to reduce computational complexity 
while preserving basic visual cortical properties, but the 
problem of precise parameter setting in the model 
seriously restricted the further development of PCNN; 
Literature[11] proposed that in the framework of 
NSST(Non-Subsampled Shearwave Transform), PCNN 
was added into fusion rules to effectively extract image 
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gradient features and retain information, but many 
parameters within PCNN were set with low accuracy; 
literature[15] proposed a simplified SPCNN model-based 
image segmentation method, automatic setting of 
parameters by the SPCNN model to achieve better 
segmentation; The literature[16] improved the SPCNN 
model to obtain a parametric adaptive PAPCNN model. 
The experiments showed that the convergence speed of 
PAPCNN model was significantly improved and the 
application in image fusion also gave better experimental 
results. 

Literature[12] proposed a low-rank representation 
(LRR) image fusion algorithm, which captured the 
global structure of the source image, but had limited 
local structure retention capability due to the lack of 
dictionary learning in LRR; literature[13] used the K-SVD 
algorithm to learn various types of sub-dictionaries and 
then constructed a global dictionary, which achieved 
good fusion results in both global and local structures; 
The literature[14] used a weighted averaging strategy and 
a summation strategy to fuse global and local structure 
information, improved clarity of fused image detail 
information respectively. 

In view of the problems of current mainstream 
image fusion algorithms. In this paper, based on the 
PAPCNN model, an improved fusion algorithm—the 
NSST-PAPCNN-LatLRR algorithm, is proposed. The 
innovation points include the following two main 
points: 

(1) The PAPCNN model is introduced into the 
multi-scale transform high-frequency partial fusion, 
which overcomes the problem of low accuracy of free 
parameter setting in the traditional PCNN model. In 
addition, the temporal decay factor is improved in the 
model to adjust the decay rate of the dynamic threshold, 
which significantly enhances the detail protection of the 
image.  

(2) In this paper, the latent low-rank representation 
model is introduced into the multi-scale transformed 
low-frequency part of the fusion for the first time, which 
also contains some significant and detailed information 
in the low-frequency part. The LatLRR model 
overcomes the problem of significant information loss in  

the low-frequency portion of traditional multi-scale 
transform image fusion. 

2 Related work 
2.1 NSST 

Fig.1 shows the decomposition process of NSST in 
detail. As a multiscale geometric analysis tool widely 
used in image processing, the NSST transform has the 
advantages of multi-directionality, translation invariance 
and low computational complexity. The multiscale 
decomposition process is implemented using a non-down 
sampling pyramidal filter combination filter (NSPF), 
which reduces the pseudo-Gibbs phenomenon and also 
overcomes the disadvantage of traditional multiscale 
transformation tools that do not possess translation 
invariance. SFB achieves directional localization. It is 
suitable for image processing with features such as 
translation invariance, sensitivity to edge contour feature 
information[17], and effective extraction of texture 
information from images[18]. Based on the above features, 
we choose NSST to complete the image decomposition 
and reconstruction process.  

 

 
 

Fig.1 NSST decomposition schematic 
 

2.2 Adaptive PCNN (PAPCNN) 
The critical problem with applying the basic PCNN 

model to image fusion is the determination of the 
parameters. Such as temporal decay factor, connection 

 
 

Fig.2 PAPCNN model architecture. 
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strength, and amplitude, etc. In order to avoid the manual 
selection of parameters that can easily cause significant 
experimental errors, Chen et al. [19] proposed a simplified 
SPCNN model based on PCNN, which simplified the 
problem of difficult parameter setting and low accuracy. A 
large amount of experimental data shows that the 
PAPCNN model also achieves good experimental results 
in image fusion, the overall image fusion quality is greatly 
improved. 
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In the PAPCNN model, Fij[n] and VL represent the 
input and connected input, respectively, for n iterations at 
the position (i, j). During the iterations, Sij is the external 
input, fixedly attached to Fij[n]. The previous firing state 
of Lij[n] and the adjacent neuron determines the present 
strength through synaptic weights. The PAPCNN model is 
shown in Fig.2. 

The internal activity Uij[n] consists of its previous 
iteration value e‒afUij[n‒1] and the input together with the 
non-linear modulation Fij[n](1+βLij[n]) connecting the 
inputs, where parameter αf is the time decay factor of the 
internal activity Uij[n], and parameter β is the connection 
strength. The output Yij[n] of the PCNN model determines 
the triggering event of the model and it has two states of 
output: Yij[n]=1 and Yij[n]=0. As shown in (4), When 
Uij[n]>Eij[n‒1], Yij[n]=1 and in fired. Updating the 
dynamic threshold Eij[n] by substituting the value of 
output Yij[n] into (5), the parameter αe is the time decay 
factor, VE is the amplitude of Yij[n]. In the PAPCNN, the 
initial values of Yij[0], Uij[0] and Eij[0] are all zero. 
Therefore, all non-zero strength neurons are excited in the 
first iteration. The architecture of the PAPCNN model is 
shown in Fig.2. 

Equations (1) to (5) indicate that five parameters 
need to be set in the PAPCNN model: the amplitude VE of 
the dynamic threshold E, the amplitude VL of the 
connection input L, Time decay factor αf for internal 
activity U and time decay factor αe for dynamic threshold 
E, and the connection strength β. Furthermore, by the 
simplified (3) of the PAPCNN model, both β and VL act as 
weighting factors for [ 1]kl ijkl klW Y n − . Therefore, these 
two parameters can be treated as a whole λ. Thus only 
four parameters actually exist: αe、αf、αf and VE. 

2.3 Latent low-rank representation 
The traditional LRR algorithm only considers the 

global structure of the image and the limited application 
range. Liu et al.[20] proposed the LatLRR algorithm based 
on the LRR theory, which can extract global and local 

structures from the source image and further enhance the 
protection of the main and local significant information. 
The algorithm can be simplified as follows (6): 
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λ is the equilibrium coefficient and is constantly 
greater than zero, ||·||

*
 is the kernel parametrization, and 

||·||
1
 is the L1 parametrization. Z is the low-rank 

coefficient matrix, L is the significant coefficient matrix, 
X is the observed data matrix, and E is the sparse noise 
component. XZ denotes the low-rank part of the image 
and LZ denotes the significant part of the image. The 
inexact augmented Lagrange multiplier (ALM) solves for 
the values of the components in (6). 

LatLRR algorithm decomposed the image into 
low-rank part Xlrr and significant part XS. The low-rank 
part contains more global structure information in the 
source image, and in order to better protect the contour 
information in the image, the weighted average strategy is 
used to process the low-rank part. The salient part mainly 
contains the salient features of the decomposed image, 
and the salient features of the source image need to be 
preserved in the fused image as much as possible, so the 
summation strategy is used to process the salient part. 

3 NSST-PAPCNN-LatLRR fusion 

algorithm 

The specific fusion steps of this algorithm are shown 
in Fig.3. First, decompose the image into high-frequency 
and low-frequency parts; then, the improved PAPCNN 
algorithm is used for the high-frequency part, and the 
latent low-rank algorithm is introduced into the 
low-frequency information fusion for the first time for the 
low-frequency part; finally, NSST reconstruction is 
performed to complete the image fusion process. 

3.1 NSST decomposition 
Firstly, the pre-aligned source images A and B are 

decomposed using NSST to obtain the decomposed 
sub-band coefficients { }, ,l k

A AH L  and { }, ,l k
B BH L . ,l k

AH  
denotes the high-frequency sub-band coefficients of the 
source image A in the decomposition series L and 
decomposition direction k, LA denotes the low-frequency 
coefficients of source image A after decomposition. 
Similar to A, ,l k

BH  and LB denote the corresponding 
sub-band coefficients after the decomposition of image B. 

3.2 High-frequency sub-band coefficient fusion 
In this paper, the improved parametric adaptive 

PCNN (PAPCNN) model of Section 2 is used for the 
fusion of high-frequency sub-bands. In the fusion process 
of the high-frequency part, in order to better handle the 
fusion of high-frequency information, we use the absolute  
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Fig.3 Flow chart of NSST-PAPCNN- LatLRR algorithm 
 

value of the high-frequency coefficients in selecting the 
appropriate network input (Namely, the feed input is  

[ ]ijF n = ,l k
SH { },S A B∈ ), to achieve better fusion effect. 

During the iterations of the high-frequency part, the final 
launch time reflects the overall activity level of the 
high-frequency part to a certain extent. According to the 
basic formula of PAPCNN, the cumulative trigger time 
can be calculated from the sum of the last trigger time and 
the final output. As in (7): 

 [ ] [ ] [ ]1ij ij ijT n T n Y n= − +   (7) 

where N is the total number of iterations for the 
cumulative trigger time, Tij[n] is the trigger time of the 
neuron. ,

,
l k
A ijT denotes the ignition time of the 

high-frequency sub-band ,l k
AH  in the PAPCNN model. 

has the same meaning for ,l k
BH . From (8) the fusion band 

is calculated: 
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Equation (8) illustrates that the final high-frequency 
coefficient is represented by the coefficient with a larger 
ignition time (More ignition times). The optimal 
high-frequency information fusion coefficient is also 
obtained in the high-frequency part by adaptively 
adjusting the size of the time decay factor αe. 

In this paper, the new algorithm improves the 
parameter αe. The parameter αe is the time decay constant 
of Eij[n]. Different grayscale images require completely 
different parameters αe. In high-intensity regions, a 
smaller αe is more suitable for fusing different parts of the 
image; for darker images, a larger parameter αe yield better 
fusion results. In order to select more appropriate 

parameters αe, In this paper, we introduce a method to 
calculate the 𝛼𝑒 parameter based on Stevens' power law[19]. 

 nV C P= ×   (9) 
Where, C is constant, V is visual perception intensity, 

P is actual physical intensity, and index n changes with the 
change of physical intensity. 

When interpreting the relationship between 
perceived luminance and actual luminance using (9) (the 
grayscale value of the grayscale image is the actual 
luminance), Select n=0.5. The target pixels in the general 
fusion image are mostly high grayscale values, due to the 
compression of gray scale, a smaller parameter αe is used 
to retain more effective image information in order to 
prevent the dynamic threshold from decaying too fast 
during the mapping process and thus causing misfires in 
the neurons corresponding to non-target pixels. Instead, 
the low grayscale region contains a large number of 
non-target pixels, so a larger αe is used to pull up the 
grayscale in this region to avoid causing information 
redundancy. 

The detailed analysis process is as follows: 
(1) The highest grayscale of the background TOtsu. 

When the difference between the lowest gray level of the 
target pixel and TOtsu is small or even identical, the smaller 
αe is selected to achieve the best fusion results. Otherwise, 
it is difficult to choose a larger αe parameter to achieve the 
desired fusion effect on the image edges. Therefore, the 
relationship between αe and TOtsu is set as an inverse 
relationship in this paper. 

(2) The grayscale distribution of the background 𝜎𝑏. If 𝜎𝑏 is small, it indicates that the grayscale value of the target 
pixel is almost identical to the overall background pixel, so 
a smaller αe is needed for image fusion; If 𝜎𝑏 is larger, a 
larger αe will give a better fusion result. On the other hand, 𝜎𝑏 has less effect on the fusion quality when the lowest gray 
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level of the target pixel is much larger than TOtsu. 
In summary, this paper sets αe and 𝜎𝑏 as a 

proportional relationship. αe has a negative relationship 
with TOtsu and a positive relationship with 𝜎𝑏. Through 
extensive experiments, it is found that the algorithm 
achieves the optimum between fusion quality and 
computational efficiency when the relationship between 
the three satisfies (10): 
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The above PAPCNN model[15] is mainly applied to 
image segmentation. Experiments have shown that it can 
also achieve significant results in dealing with image 
fusion problems. Especially when the high-frequency 
coefficients obtained by multi-scale transformation are 
fused, the visual and objective indexes of the algorithm 
are greatly improved compared with the traditional 
algorithm. For high-frequency coefficient fusion of 
multiscale transform, the absolute value of coefficients 
represents the activity level information to a certain extent, 
a larger absolute value of the coefficient indicates, to a 
certain extent, a higher activity level. The PCNN model is 
based on pixel intensities for image segmentation. The 
improved PAPCNN inherits its advantages in image 
segmentation by fusion of high-frequency parts, and also 
enhances the ability to adjust the dynamic threshold E, 
resulting in a more stable activity metric[16]. Therefore, 
the improved PAPCNN model can extend the image 
fusion domain from the image segmentation domain, and 
the above-mentioned improved PAPCNN model is chosen 
as the fusion scheme for multi-scale transformed 
high-frequency coefficients. 

3.3 Low-frequency sub-band coefficient fusion 
After the image is decomposed, part of the important 

detail information will be retained in the low-frequency 
part, so the low-frequency part fusion process is also a key 
part in image fusion. The new algorithm selects latent 
low-rank to represent the fusion low-frequency 
coefficients[20]. First, the low-frequency part is 
decomposed to obtain the significant part LC_s and the 
low-rank part LC_lrr, where { },C A B∈  ; Then, according 
to the characteristics of the information contained in the 
low-rank part and the significant part, the weighted 
average fusion strategy and the summation fusion strategy 
are used to get the fused low-rank part Llrr and the 
significant part LS; Finally, the fused low-frequency 
coefficients are obtained by accumulating the low-rank 
and significant parts. Fig.4 illustrates the low-frequency 
part of the fusion process. 

LatLRR algorithm decomposes the image into two 
parts: global structure and locally significant structure, 
which overcomes the problems of inconspicuous 
saliency features, insufficient protection of primary 

information, and artifacts after fusion by traditional 
low-frequency algorithms. In this paper, it is considered 
effective to use LatLRR algorithm for low-frequency 
sub-band information fusion. The LatLRR algorithm 
approximates the low-frequency coefficients both 
globally and locally, which can fully preserve the 
significant information of the image, and the 
experimental results are also more natural. Based on the 
advantages of LatLRR algorithm, we adopt the LatLRR 
algorithm model as the fusion scheme of multi-scale 
transformed low-frequency parts. 

 

 
 

Fig.4. Flow chart of Latent Low-Lank Representation algorithm 
 

3.4 NSST reconstruction 
The inverse NSST only requires a non-down 

sampling shear to sum the coefficients ,l k
FH  and LF that 

have been derived to obtain the final fused image F.  

4 Experimental results and analysis 
4.1 Image fusion quality evaluation index 

In practical applications, visual subjective evaluation of 
image fusion quality mainly relies on the human visual 
system for subjective assessment of fused images, which is 
practical for some specific fusion scenarios. However, it has 
disadvantages such as strong subjectivity and one-sidedness. 
The objective evaluation method analyzes the performance 
of the six fusion methods through objective indicators, and 
the evaluation results are more instructive. 

We have chosen six widely used objective fusion 
metrics. They are Average Gradient (AG), Space 
Frequency (SF), Entropy (EN), Mutual Information(MI), 
Standard Deviation(SD) and edge information retention 
(QAB/F). SF reflects the rate of change of the image gray 
scale, and the value of SF is proportional to the similarity 
between the source image and the experimental result 
map; AG is the average gradient measure of the image, 
which is used to measure the clarity of the fused image. 
EN indicates the information content of the fused image, 
and higher entropy means better fusion performance; MI 
measures the degree of similarity between images, and a 
higher value means that the fused image contains more 
information from the source image; QAB/F uses local 
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metrics to calculate the transfer amount of source image 
edge information injected into the fusion image; SD 
reflects the degree of dispersion between pixels. Under 
normal circumstances, the larger the above six indicators, 
the better the fusion. 

4.2 Methods for comparison 
The new algorithm was compared with the 

traditional PCNN algorithm and five existing 
representative fusion algorithms, namely, LRR[14], 
MST-SR[19], NSCT-PCNN[18], NSST-PAPCNN[16] and 
NSST-PAPCNN-CSR. Among them, MST-SR, NSCT- 
PCNN, NSST-PAPCNN and NSST-PAPCNN-CSR are 
all classical fusion schemes based on multi-scale 
transformation, similar to the fusion framework of the 
proposed scheme in this paper. LatLRR algorithm fuses 
the whole image and can be compared with the algorithm 
in this paper. The parameter values used in these 
scenarios are the default values provided by the author. 

4.3 Image fusion experiments 
The images used in this paper are all commonly used 

fusion images, without any racial or human rights 
implications. All source images were acquired from the 
same slice with different imaging methods at the same 
angle. We selected 80 sets of brain source images for 
fusion testing to verify the outstanding performance of the 
algorithm in this paper. Among them, 20 sets each of 
CT/MR, MR-T1/MR-T2, MR/PET, and MR/SPECT 
images were used. The selected source images were 
spatially resolved at 256×256 pixels and were accurately 
matched before use. In this section, the new algorithm 
(NSST-PAPCNN-LatLRR) is comprehensively compared 
with the traditional algorithm PCNN and five mainstream 
algorithms. It is proved that the algorithm of this paper is 
leading in both subjective and objective metrics evaluation. 
4.3.1 Visual quality 

Fig.5 to Fig.8 show the experimental results of the 
four sets of different modality images. Comparing Fig.c 
and Fig.i, it can be seen that the fusion effect of the 
improved PCNN algorithm has a large improvement, and 
the proposed model is superior to the classical PCNN 
fusion model. The information of MRI images of 
MST-SR, NSCT-PCNN, and NSST-PAPCNN (Fig.5e-g) 
in Fig.5 is over-enhanced, and the overall brightness of 
the fused images is high; the NSST-PAPCNN-CSR 
(Fig.5h) algorithm performs convolutional sparse 
representation of low frequencies as a whole, which 
leads to blurring of key information in the experimental 
results; LatLRR and the new algorithm fuse the effective 
information of CT/MRI images better, where LatLRR 
fused images lack the protection of details and grain, and 
the algorithm in this paper overcomes the above 
shortcomings and has better performance. The LatLRR 
fusion image in Fig.6 (Fig.d) lacks contrast in overall 
brightness; the MST-SR, NSCT-PCNN, and NSST-PAPCNN- 
CSR fusion images (Fig.6e, Fig.6g, Fig.6i) have limited 
detail extraction ability and lack effective protection of 

detail information, resulting in a blurred overall visual 
effect; the NSST-PAPCNN and the new algorithm fusion 
effect is significantly better than other algorithms, but the 
algorithm of this paper is significantly better than the 
NSST-PAPCNN algorithm for processing the grain and 
edge. In Fig.7, the fused images of MST-SR, 
NSST-PAPCNN, and NSST-PAPCNN-CSR (Fig.7e, 
Fig.7g, Fig.7i) have obvious artifacts and low local 
brightness; LatLRR (Fig.7d) and NSCT-PCNN (Fig.7f) 
have higher overall visual quality, and the details of the 
images can be well The texture of the new algorithm 
(Fig.7i) is clearer and the significant features are more 
obvious, and there is no noise interference such as 
artifacts. LatLRR, MST-SR, and NSCT-PCNN 
(Fig.8d-Fig.8f) fused images in Fig.8 introduced obvious 
noise, and the overall fusion effect was poor; 
NSST-PAPCNN-CSR (Fig.8h) retained too much 
information in the MR source image, resulting in high 
local brightness; NSST-PAPCNN (Fig.8g) and the new 
The fused images of NSST-PAPCNN (Fig.8g) and the 
new algorithm (Fig.8i) fully reflect the key information 
of the source images, but there are also a small number 
of artifacts, and the new algorithm has higher clarity of 
detail information. The NSST-PAPCNN- LatLRR 
algorithm proposed in this paper (Fig.8g) fully preserves 
the effective information of the source image, and the 
low-frequency band also contains part of the detail 
information. The second decomposition of the 
low-frequency sub-band information by LatLRR 
algorithm fully preserves the global structure and 
significant information structure of the low-frequency 
segment. Therefore, the detail information contained in 
the low-frequency segment can be well preserved. The 
high-frequency sub-band information is fused by the 
improved PAPCNN model, and the new algorithm 
obtains the optimal value of this target parameter by the 
improved parameter 𝛼𝑒 algorithm, and the fused image 
can fully retain the significant detail information of the 
source image without the problem of inappropriate 
overall brightness of other algorithms, and can also 
clearly represent the contour, texture and the fused image 
can fully retain the significant detail information of the 
source image without the problem of inappropriate 
overall brightness of other algorithms, and can also 
clearly represent the contour, texture and edge features of 
the image without the problem of blurred details or even 
loss and obvious noise artifact. 
4.3.2 Objective evaluation 

Table 1 objectively evaluates the performance of 
different fusion algorithms for medical image fusion. The 
data of six metrics corresponding to the fused images for 
the six algorithms are given. For each metric, the highest 
scores of the six algorithms are shown in bold, and the 
data ranked second and third are underlined. The top three 
scores are indicated by their ranking with numbers in 
parentheses. To more visually compare the objective 
metrics of different fusion schemes, we visualize the data 
content in Table 1 as shown in Fig.9. 
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                                    (a)CT                   (b) MRI                   (c) PCNN 
 

   
 

(d) LatLRR               (e) MST-SR              (f) NSCT-PCNN 
 

   
 

(g) NSST-PAPCNN       (h) NSST-PAPCNN-CSR            (i) Proposed 
 

Fig.5 CT and MR medical image fusion results. 
 

   
 

(a)MR-T1                (b) MR-T2                 (c) PCNN 
 

   
 

(d) LatLRR                (e) MST-SR              (f) NSCT-PCNN 
 

   
 

(g) NSST-PAPCNN        (h) NSST-PAPCNN-CSR          (i) Proposed 
 

Fig.6 MR-T1 and MR-T2 medical image fusion results. 
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 (a)MR                   (b) PET                   (c) PCNN 
 

   
 

(d) LatLRR                 (e) MST-SR               (f) NSCT-PCNN 
 

   
 

(g) NSST-PAPCNN        (h) NSST-PAPCNN-CSR          (i) Proposed 
 

Fig.7. MR and PET medical image fusion results. 
 

   
 

(a)MR                   (b) SPECT                (c) PCNN 
  

   
 

(d) LatLRR                 (e) MST-SR              (f) NSCT-PCNN 
 

   
 

(g) NSST-PAPCNN        (h) NSST-PAPCNN-CSR          (i) Proposed 
 

Fig.8 MR and SPECT medical image fusion results. 
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Fig.9 Six image fusion methods for objective evaluation of visual graphics 

 
Table 1 Objective evaluation of different medical image fusion methods 

Images Metrics LatLRR MST-SR NSCT-PCNN NSST-PAPCNN NSST-PAPCNN-CSR Proposed 

CT/MR 

SF 26.562 32.3869 28.3453 33.0035② 32.978  ③ 33.0266  ①
AG 12.6594 15.9146 14.5297 16.4285② 16.2706 ③ 16.5895  ①
EN 7.8073 ② 7.5956 7.5137 7.7279 ③ 7.5252 7.8177   ①
MI 5.9566 ③ 5.9347 5.7921 5.8742 5.9926  ① 5.977    ②

QAB/F 0.4495 0.5023 0.1653 0.5136  ② 0.503  ③ 0.5192   ①
SD 74.9712 77.7177 74.4846 81.2083 ① 80.0451 ② 78.981   ③

MR-T1/ 
MR-T2 

SF 20.3689 24.668① 20.9992 24.4838 ③ 22.5898 24.5038  ②
AG 6.8512 8.2826② 7.6368 8.2234  ③ 7.095 8.3514   ①
EN 4.4209 4.5898② 4.5801③ 4.1088 3.657 5.2241   ①
MI 2.9431 ① 2.7097 2.6821 2.8093  ③ 2.7476 2.8412   ②

QAB/F 0.4809 0.5171 0.2188 0.5469  ② 0.5387 ③ 0.5474   ①
SD 71.3351② 62.4381 61.8906 68.525  ③ 59.0081 72.0205  ①
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(Table 1) 

Images Metrics LatLRR MST-SR NSCT-PCNN NSST-PAPCNN NSST-PAPCNN-CSR Proposed 

MR/PET 

SF 22.7939 27.335② 26.0492 27.275  ③ 27.2209 27.8957  ①

AG 6.3729 8.5347② 7.9795 8.2077 8.2539  ③ 8.8776   ①

EN 4.0299 ③ 3.6541 4.0896② 3.3786 3.8903 4.5803   ①

MI 3.4716 3.5542② 3.4526 3.4967  ③ 3.4647 3.6057   ①

QAB/F 0.3806 0.5849① 0.4975 0.5734  ③ 0.5442 0.5804   ②

SD 67.3905 70.816③ 70.864② 66.7107 68.9739 74.3213  ①

MR/SPECT 

SF 17.468 19.7207 17.5577 20.1509 ③ 20.1522 ② 20.4036  ①

AG 5.7678 6.5176 5.923 6.7812  ② 6.7689 ③ 6.8702   ①

EN 4.8257 ③ 4.2975 5.5651① 4.4068 4.6301 5.3754   ②

MI 2.7797 2.8309③ 2.7102 2.8053 2.8445 ② 2.8684   ①

QAB/F 0.4211 0.5809 0.4307 0.6023  ② 0.5994  ③ 0.6093   ①

SD 63.5518 64.9827 60.6428 67.6434 ② 75.0464  ③ 75.2073  ①

 
Fig.9 shows. Among the four sets of fused images, 

the new algorithm is in the top three for all six metric 
parameters. Among all the six fusion metrics, our scheme 
is the only one that consistently ranks in the top three for 
all metrics. Especially for indexes AG, the new algorithm 
is a substantial improvement, all in the first position. The 
algorithm in this paper has the same fusion framework as the 
NSST-PAPCNN and NSST-PAPCNN-CSR algorithms, 
but the proposed method outperforms both of them in all 
four sets of fused images, which shows the clear 
advantage of our method. The MST-SR algorithm obtains 
high scores in AG metrics for both sets of photos, which is 
consistent with the advantages of the sparse 
representation model, but the algorithm in this paper is 
leading in all other metrics. The above experimental 
results verify that the new algorithm can achieve greater 
competitiveness in advanced image fusion schemes. 

5 Conclusion 

For the shortage of traditional image fusion 
algorithm, a new fusion algorithm is proposed in this 
paper. The innovation of this scheme is mainly in two 
aspects. First, we introduce the PAPCNN model to 
decompose the fusion of the high-frequency part of the 
image, and the algorithm of the time decay factor eα  
parameter is optimally adjusted better to coordinate the 
decay rate of the dynamic threshold E. Then, the latent 
low-rank representation algorithm is introduced into the 
low-frequency part fusion for the first time to address the 
problem that the traditional algorithm tends to ignore the 
effective information in the low-frequency part. It solves 
the problems of low precision of parameter setting and 
insufficient protection of detail capability in PCNN model. 
To verify the fusion performance of the new algorithm, a 
large number of medical images are selected for 
experiments and compared with five advanced image 
fusion schemes. The fusion results show a significant 

improvement in the visual effects of the new algorithm, 
and the objective indexes are in the leading position. In 
our further work, we will develop more efficient image 
fusion strategies to enhance the protection of valid 
information and improve the practical applications of 
image fusion. In addition, we will explore the potential of 
new algorithms for remote sensing images, infrared and 
visible images, and other areas.  
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