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Abstract: Rotational Vision System (RVS) is a common active vision system with only rotational degrees of 
freedom. Usually, the degree of freedom for rotation is provided by the turntable and pan head. Or the hand to eye 

(EIH) structure in articulated arm robots. Due to assembly deviations and manufacturing accuracy limitations, the 

ideal assumption that the rotation axis is fully aligned with the coordinate axis of the local camera is mostly vi-

olated. To address this issue, we propose a generalized deviation model that specifies a rotation axis that connects 

the rotational motion of the platform with the external orientation (EO) of the camera. On this basis, we propose 

a heuristic estimation algorithm to minimize global reprojection errors and fit circles in space under constraints of 

global optimization. The experiment shows that the translation and tilt average reprojection errors of dynamic EO 

reconstruction based on the reprojection error method are 0.14 and 0.08 pixels, respectively. In the absence of 

angle measurement, the results of the circle fitting method are similar to them (with a relative error of about 2%), 

meeting the application requirements of general visual measurement. 
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1  Introduction 

RVS has been used in PTZ cameras [1,2], UAV 
aerial photography[3], and robot manipulators [4] for 
applica-tions such as visual tracking[5,6] and contactless 
measurement. However, there is a practical issue that 
has been addressed in literature [7-11]: due to the 
virtuality of rotation and optical axis, it's not possible 
to align the coordinate axes completely. This affects the 
reliability and accuracy of tracking and measuring. 
Davis and Chen [10] used pan-tilt parameters in the 
imaging process for pan-tilt camera motion and 
constructed a virtual calib-ration object using the wide 
area surveillance system. Byun et al. [9] proposed an 
alternative approach based on an independent pan/tilt  

axis model, which calibrates the misalignment axis 
relationship by fitting simulated circular trajectories 
created by corner points of a planar checkerboard.They 
also formulated the inverse kine-matics for servo 
control using 3D point transfor-mations. Li et al. [12] 

used a nonlinear parameter mapping to correct the 
camera rotation angle, obtaining pan and tilt angles via 
a quadratic equation of tangent. However, their 
single-point-calibration-method assumes parallel 
rotation axes with the world XY axes, affecting 
accuracy and generality. Wu and Radke [11] 

compensated for mechanical errors by modeling the 
camera rotation angle as linear. However, their method 
may result in propagation errors for large working 
distances. The precise transformation of the coordinate 
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system between the camera and the world is crucial for 
3D vision applications. Although this task is known by 
different names in different domains, the approach 
involves establishing feature matching. However, there 
is a slight translation when the camera is rotated and 
obtaining robust estimates is challenging. To address 
this problem, some work has focused on relative pose 
estimation using camera networks. Nagayoshi and 
Pollefeys [13] proposed a circle-pose estimation method 
to estimate relative camera poses from circular 
trajectories generated by the pan-tilt rotation of a 
marker set on a camera. Chen et al. [14] developed the 
ITPC method for calculating head-eye parameters of a 
robotic bionic stereo system using a dual 
quaternion-based approach to improve accuracy. 
Rebello et al.[15]studied DCC calibration for external 
transfor-mations between cameras in active visual 
SLAM, using a pose-loop error optimization algorithm 
to enhance accuracy. Chen et al. [16] estimated the 
rotation axis direction and circle centers of closed 
circle trajectories from 3D corner points using a 
separate rotating actuated mechanism and camera, 
under specific assumptions. This paper has two main 
contributions. First, it proposes a general framework to 
model the assembly error between the camera and the 
rotating actuation platform, using the corresponding 
axes to reconstruct the external localization of the RVS 
with dynamic rotation angle information. Second, it 
proposes a way to estimate the rotation axis by 
minimizing the multi-view reprojection error and 
introduces a new 3D circle fitting algorithm. 
Experimental results show the effectiveness of these 
methods for 3D visual scanning of large targets, servo 
control, and motion target tracking with motion 
decoupling. These contributions have further research 
and application potential in various fields.  

2  Model 

Focusing on the accurate dynamic EO of camera, 
we propose a generalized mis-alignment axis-centre 
model for RVS which is illustrated in Fig.1. We take 
thesame idea with Davis and Chen [10] that rotations are 
occurring around arbitraryaxes in space so they can be 
regarded as spatially equivalent. For a certain 

rotationaxis we specify a corresponding axis attached 
to the camera for they are relativelycoincident in most 
cases.The rotation axis is abstractly represented by a 
normalized vector n and a point O on it with respect to 
the optical centre of the camera. Thispoint can be 
arbitrary but we choose the one that is a perpendicular 
intersectionfrom the optical centre to the rotation axis 
for simplicity. The geometric character-ization of a 
camera before and after it rotates in 3D space is 
denoted as C-XcYcZc and C′-X′cY′cZ′c. Similarly, the 
referenced world coordinate system is denoted by 
W-XwYwZw for the sake of universality even though 
sometimes it can be replacedby that of the initial 
camera. Thus, all coordinates in the following 
discussion areunified in this referenced coordinate 
system. Given the camera proceeds from C to C′ under 
rotation angle θ of its platform (say, a pan-tilt 
turntable), the relativeorientation of it can be 
analytically gotten with Rodriguez formulation[17].  

 2sin [ ] (1 cos )[ ]c cR I θ θ′ × ×= + + −n n  (1) 

It is quite simple a transform that 

 
T

T

cw cw

c w c w

R

R ′ ′
′

= −

= −

WC t

WC t



  (2) 

and the vector operation 

 

OC WC WO

OC WC WO

CC OC OC.

′ ′

′ ′

= −

= −

= −

  

  

  
  (3) 

After a short derivation process we get 

 ( )cos sin [ ] OCIθ θ′
×= +OC n

 
 (4) 

Similar to (2), the absolute motion of the optical 
centre of the camera can be rewritten as follow with the 
utilization of unit orthogonality of rotation matrix 

 T T
cw c c c cR R ′ ′

′ = −CC t


 (5) 

Note that the tc′c term is a vector corresponding to 
the C so the additional transform T

cwR−  is introduced 

into. We denote WO


 as o  and WC


as c equations 
(2)(3)(4)(5) yields  

 ( )c c c wR L′ ′= − −t c o   (6) 

where L=(cosθ–1)I+sinθ[n]× is extracted and we 
will discuss it next. Based on above derivations in 
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(1)(6), the dynamic exterior orientation can be pre-
sented by transformation matrix in a compact and 
iterative form as 

 cwc w c cT T T′ ′ ′=  (7) 

And they have an unified form as follow except 
with corresponding subscripts attached to them. 

 T

t
0 1
R

T  =  
 

. 

It should be made clear that we update the com-
ponent of translation directly to avoid complicated cal-
culations, started from the second equation in (2) that 

 [ ( ) ]c w c wt R L c o c′ ′= − − +  (8) 

According to our assumptions of the model, there 
are two inherent constraints between the parameters 
that 
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Fig.1  RVS Non-aligned Axis Deviation Model 
 

3  Estimation Algorithms 

To determine the rotational axis deviation para-
meters of the RVS model constructed in the previous 
section, the estimation method should be designed 
based on the specific system configuration of the actual 
application. For example, an RGB-D camera that pro-
vides depth measurement can simplify the estimation 
process to some extent. However, from a more general 

perspective, this paper proposes different types of 
calibration methods for general camera hardware con-
figurations and conducts corresponding experiments. 

3.1  Estimation with Stereo Camera Calibra-
tion 

The hardware system setup for the experiment is 
shown in Fig.2. The stationary camera is fixed on a 
tripod and kept still during the calibration process. The 
rotating camera is fixed on a two-dimensional electric 
control gimbal and rotates sequentially with the gimbal 
around a certain axis. Assuming that the gimbal is 
rotated n groups of equal intervals relative to a certain 
rotation axis, and the angle interval between the rota-
tions δθ is not less than 2°, the combination of the 
number of groups n and the equal angle interval δθ 
should ensure that the binocular stereo vision system 
always has sufficient common visual field (not less 
than 1/9 of the stationary camera's field of view). In 
fact, according to equations (1) and (9), the corres-
pondence between relative rotation and axis-angle can 
be simplified into the following linear system of equ-
ations. 

 
32 23

13 31

21 12

2sin
− 

 ⋅ = − 
 − 

r r
n r r

r r
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Fig.2  Schematic Diagram of RVS Calibration Based on 
Stereo Extrinsic Parameters 

 

Similarly, if the coordinates of the camera's opt-
ical center before and after rotation are denoted as c(X, 
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Y, Z) and c′(X′, Y′, Z′) respectively, combined with the 
above equations (2) and (8) and after a simple trans-
formation, we can obtain 
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where A is the intermediate quantity introduced 
for the sake of a concise formal expression of the eq-
uation. 
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The external parameters of the binocular camera  

changes are calibrated using the binocular stereo vision 
system during the intervals of the said equally spaced 
rotations (with the stationary camera as reference) to 
obtain the relative poses of the cameras before and 
after rotation. 

 0 0 0i i l l i l l
T

c c c c c c c c c c= =R R R R R  (13) 

The subscript c0 represents the initial position of 
the camera, while cl corresponds to the stationary ref-
erence camera (left camera), and ci(i=1, 2, …, n) 
represents the corresponding position of the camera 
after its group i rotation, with their respective optical 
center coordinates being c0(X0, Y0, Z0), cl(Xl, Yl, Zl), 
and ci(Xi, Yi, Zi). The overdetermined linear equation 
system is constructed incrementally in an additive 
manner as shown below.  
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Find the least squares estimate of the direction 
vector by solving this system of linear equations. 

 1ˆ ( )−= T T
n n n nn A A A b   (15) 

Similarly, the obtained rotation direction vector  

estimates are subsequently substituted into the 
following set of equations to obtain the least-squares 
estimate of the vertical center The only difference is 
that the constraint described by the second equation in 
Eq.(9) is associated here 
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Where ρ is the weight of the constraint equation, 
it should be set as large as possible (set to 105 in the 
experiment). 

3.2  Estimation with Angel Measurement 

The camera is initialized to capture satisfying 

images, and then holds the imaging settings constant. 
And we assume the intrinsic parameters to be 
invariable when the camera rotates. Thus, the 
estimation process can be separated where the change 
in pixels can be attributed to camera motion only. The 
intrinsic parameters composing into a matrix K are 
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calibrated by Zhang’s method [18] with a checkerboard 
pattern. The pattern is subsequently used to estimate 
our rotation parameters with the help of OpenCV 
functions [19] to get the pixel coordinates of the corner 
points followed by distortion elimination. We make use 
of the reprojection error again this time for 
constructing the optimization problem of camera 
motion. A corner point of the checkboard pattern is 
denoted as P[X, Y, 0]T when we define the world 
coordinate system being located at it. 

We replace P with Q[X, Y, 1]T and Rc′w, tc′w with 
G[r1, r2, t] where r1, r2 are the first two columns of the 
rotation matrix Rc′w and t is the translation vector tc′w. 
The initial EO of the camera can be solved as a 
Perspective-n-Points (PnP) problem at any proper 
location or just the last location of the camera 
calibration process. Then the simplified transformation 
matrix G can be derived from the model described in 
Section . Thus the estimated projection of P can be 
expressed forward as 

 ˆ ~q KGQ  (17) 

Here the ∼ sign represents it’s an equation in the 
homogeneous sense for the projection point on the 
image plane is of 2 dimensions. And the DOF of 
variables is 4 for the two parametric vectors are both of 
3 dimensions but with 2 equation constraints discussed 
above in (9). That means the minimum configuration 
solution includes 2 corresponding points with only 1 
rotation motion. Nevertheless, we take the same setup 
strategy naturally as in bundle adjustment (BA) 
optimization process to mitigate the possible coupling 
of the above two parametric vectors. Assume we are 
given n images of the complete checkboard pattern at n 
discrete locations from camera rotations and the total 
number of corner points is m , we can obtain the 
following object function under maximum-likelihood 
estimate: 

2
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ij
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q q n o θ K Q R t  (18) 

where q̂ (n, o|θi, K, Qj, Rcw, tcw) is the estimated 

projection of point Pj in image i corresponding to a 
rotation angle of θi according to (17) and qij is the 
actual observation. Combined with (9), the estimation 

task turns out to be solving a constrained nonlinear 
least square optimization problem. The initial value of 
n is simply set as [1 0 0]T and [0 1 0]T for tilt and pan 
rotation respectively, and o  as c . 

3.3  Estimation without Angle Measurements 

It makes dynamic EO results unreliable just by the 
motion model of the camera formulated in Section when 
we lack of accurate angle measurements. Unless we are 
provided with useful observations which can establish 
the matches among rotations. But for the estimation of 
rotation parameters, we can utilize the particular motion 
paradigm that the trajectory of the camera is part of a 
circle in space. We let {Ri, ti|i=0, 1, 2, …, n} be the 
solutions through PnP and the R0, t0 denotes the ex-
trinsic parameters of the camera before it rotates. Then 
coordinates {ci} of the optical centers {Ci} of the 
camera are obtained according to (2). The circle in 
space can be mathematically represented by 
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where p denotes the coordinate of an arbitrary 
point on the circle and e is the radius of the circle which 
reflects the eccentric distance of a RVS. As illustrated 
in Fig.3, the practical points {ci} are of little probability 
locating exactly at the circle due to noise from mea-
surements and the PnP solutions. We use { ic }to de-

note the coordinates of points { iC } which satisfy the 

above circle equation nearest to the practical points, 
and {di} to denote those of the perpendicular intersec-
tions {Di} which are formed from points {ci} to the 
hypothetic plane formulated by the second equation in 
(19). Then similarly, the problem of circle fitting 
transforms to minimizing the Euclidean distance of 
corresponding points and thus the objective function 
here is  
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It’s a basic equation that 
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According to algebraic geometry it’s also quite sim-
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ple that 
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where v1i and v2i are residuals when ci of point Ci 
is substituted into the first and second equation in (19) 
respectively. In this case where the sampled points are 
sparse and concentrated in a small part of a virtual 
circle, we impose the following constraint on the radius 
to avoid the predictable overparameterization. 
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Then in the same way, the problem is also a con-
strained least-square optimization one with simulta-
neous equations listed in this subsection and the con-
straints described above except with the change from 
the second equation in (9) to 
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The geometrical interpretation of (24) and (25) 
are somehow reasonable situations where the sampled 
points are symmetrical distributed around the sphere 
and plane respectively, which are defined by the two 
equations in (19).  

It needs to be clarified that the parametric vectors 
n and o are estimated separatly here to reduce the im-
pact of uncertain coordination errors of points {Ci}. We 
take advantage of the convenient transformation from a 
rotation matrix to a rotation vector. Rotation matrix sets 

{Ri|i=0,1,2, …, n} are converted to { | ,  =T
j iR R i j

0,  1,  2,  ,  ;  < n i j } and then the corresponding rota-

tion vectors {rij}. For the simplicity of representation, 
we denote the vector normalization operation as N
and the direction of rotation axis can be extracted by 

 
,

( ( ))ij ij
i j

n N N rρ=      (26) 

where ρij are weights attached to different image 
index i, j. We make it simply be ρij=(j–i)2 to put more 

trust on image pairs of larger angle interval. 
 

 
 

Fig.3  Schematic Diagram of Spatial Circle Fitting for  
RVS Calibration 

 

4  Experiments 

4.1  Based on Stereo Extrinsic Calibration 

The corresponding experiments were carried out 
according to the described method, setting the equal 
angle interval of the PT rotation in both pan(Y) and 
tilt(X) directions to 5°, and obtaining 4 and 5 sets of 
episodic calibrations for binocular stereo vision 
co-viewing cases, respectively. Then, we substitute 
The results of the least-squares estimation of the pa-
rameters obtained by solving the linear equation sys-
tem are shown in Table 1 below. 

The calibration results of the pan axis (Y-axis) in 
the table exhibit significant errors (highlighted in red), 
which are due to numerical issues arising in the direct 
solution of the linear equation system for the cam-
era-gimbal system when the corresponding axis 
heights in the world coordinate system coincide. As 
described herein, this method using equally spaced 
angle intervals set to 5° only allows for 4 and 5 groups 
on the two axes, respectively, which is insufficiently 
redundant for constructing an overdetermined linear 
equation system. This raises potential contradictions in 
the axis estimation process. When a sufficient number 
of groups is used, the angle interval is restricted to a  



INSTRUMENTATION, Vol. 10, No. 3, September 2023  29 
 
 
 
 
 

Table 1  Estimation Results Based on Stereo Extrinsic Calibration 

 
Tilt Pan 

PT Camera PT Camera 

rotation vector 
nx 0.785864 0.811708 –0.000993 0.0074508 
ny 0.11122 0.11599 1 0.99201 
Nz 0.60832 0.57243 –2.95e–15 –0.125936 

Vertical center 
Ox 1325.21 1270.05 6762.63 600.466 
Oy 249.736 76.2511 78.0451 71.9265 
Oz –469.741 –366.757 4219.95 –672.546 

 
certain range, which results in a high risk of 
"ill-conditioning" of the previously extracted matrix L, 
particularly when the relevant parameters n and o differ 
by more than 3-4 orders of magnitude. This risk leads 
to more severe numerical issues. 

4.2  Based on Minimize Reprojection Error 

We tested the proposed model and estimation 
methods on a RVS composed of an electrical turntable 
and a camera with a resolution of 2000 × 1000. The 
results of the camera calibration internal obtained with 
the MATLAB Toolbox [20] are shown in Table 2 and the 
overall estimation in the form of reprojection error to 
obtain the evaluation results is shown in Fig.4. Fig.5 
shows the captured real image of major parts of the 
experimental setup. 

 

Table 2  Intrinsic Outputs of Camera Calibration 

Intrinsic  
Matrix 

2232.3188 0 0
0 2233.0692 0
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Sampled images, as illustrated in Fig.6, were 

generated by tilt (axis X) and pan (axis Y) motion of 
turntable while the reused calibration pattern was kept 
absolutely stationary. The 150 inner corner-points (10 
rows × 15 columns) are guaranteed to be in the FOV of 
the camera throughout the calibration process. In order 
to maintain consistency in the following discussion, 
image sequences are indexed respectively from 0 to 8 
and 0 to 13 for pan and tilt, with the index 0 corres-
ponding to the referenced frame. And units of data in o 
and t are both mm. The rotation angles were controlled 

to be uniformly 2◦ among adjacent frames for both pan 
and tilt (it can be adjusted flexibly according to the 
angle of view). 

 

 
 

Fig.4  Reprojection Error of Camera Calibration 
 

 
 

Fig.5  Schematic Diagram of Spatial Circle  
Fitting for RVS Calibration 
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number of sample points (e.g. by reducing the rotation 
angle interval) and using outlier detection techniques 

like RANSAC, the estimation results of this method 
can become more stable. 

 
Table 4  Deviation between RVS Dynamic EO Reconstruction Results and PnP Solutions 

Serial Number 
Tilt (X) 

δr δt 
δrx δry δrz δtx δrx δrx 

1 –2.278e–3 7.81e–4 9.1e–5 –0.0327 –0.0804 –0.5882 
2 1.781e–3 1.375e–3 2.2e–5 –0.0351 –0.0924 –0.2685 
3 2.019e–3 –6.50e–4 –4.3e–5 0.0511 –0.1704 ––0.0474 
4 –1.44e–3 2.494e–3 –7.2e–5 0.0042 –0.0150 ––0.7796 
5 –1.991e–3 1.263e–3 –9.71e–4 0.0525 –0.0262 –0.5882 
6 –6.73e–4 3.238e–3 –3.98e–4 –0.0654 –0.0864 –1.4897 
7 –1.409e–3 1.401e–3 –2.27e–4 –0.0304 –0.2170 –1.2415 
8 7.0e–5 2.955e–3 –5.40e–4 –0.0295 –0.2031 –1.7966 

Serial Number 
Pan (Y) 

δrT δtT 
δrx δry δrz δtx δrx δrx 

1 1.589e–3 –4.13e–4 –2.96e–4 0.3832 –0.1447 0.4733 
2 –4.009e–3 9.23e–4 6.77e–4 0.0126 –0.0929 –0.4973 
3 –4.1e–5 2.754e–3 1.63e–4 0.3335 –0.2602 0.2174 
4 2.055e–3 –2.47e–4 –1.52e–4 0.2150 –0.1811 0.8470 
5 –4.84e–4 1.309e–3 6.2e–5 0.4606 –0.3395 0.1905 
6 3.418e–3 1.408e–3 2.51e–4 0.6882 –0.2072 1.3807 
7 3.057e–3 –3.0e–5 1.42e–4 0.8491 –0.2257 1.4190 
8 –1.30e–4 7.13e–4 2.63e–4 0.5812 –0.1215 1.2074 
9 –8e–6 1.139e–3 3.53e–4 0.1877 –0.1805 0.8890 

10 1.682e–3 1.60e–4 6.82e–4 –0.3065 –0.0654 1.3625 
11 –2.69e–4 –1.168e–3 3.74e–4 –0.2331 –0.1446 1.4577 
12 –1.411e–3 –1.369e–3 2.67e–4 –0.5972 0.2962 1.0826 
13 –3.276e–3 –1.45e–4 –1.4e–5 –2.1034 0.0991 0.1326 

 

 
 

Fig.7  Reprojection Error of RVS Calibration Results Evaluation 
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Table 5  Estimation Results Based on Spatial Circle 
Fitting 

 n o 

Tilt (X axis) 

0.99990
0.00950
0.01075

− 
 − 
 − 

 
61.9094
47.8969

1600.5692

 
 − 
 − 

 

Pan (Y axis) 

0.00358
0.99974

0.02259

 
 − 
  

 
62.2023
53.9735

1643.9392

 
 − 
 − 

 

 

5  Conclusion 

We proposed a generic space-equivalent 
non-aligned axis-centre model of RVS for dynamic EO 
of the camera, and presented two types of estimation 
methods of the rotation axis specified to different 
hardware conditions based on the same model. And the 
calibration experiments are conducted on a relatively 
common pan & tilt (PT) system. It is designed to be 
integrated with the camera calibration procedure re-
flected in three aspects. First, the calibration pattern is 
shared with. Then the complete imaging system can be 
recovered with again only a few images of the pattern 
added. And by combining the whole calibration results 
of the system, we can take the same criteria with that of 
the camera calibration to evaluate the output. Benifit-
ing from these, the estimation methods are shown to be 
accurate and efficient.  

It is indicated that the referenced image selected 
has an impact on the estimation method of minimizing 
reprojection error from both theoretical model and 
experimental results. But this influence is not signifi-
cant due to the robustness of the multi-view multi 
-point BA, similar to the mainstream setup of camera 
calibration. This is not the case for the estimation 
method of circle fitting, however, especially for such a 
narrow range of samples. In addition, the indeterminate 
combined errors of calculated coordinates of sampled 
points from PnP results make it even worse. A fairly 
straightforward way to minimize these negative effects 
is to establish a wider calibration target with encoding 
features to extend range of sampling points. We plan to 
investigate approaches and implement comparable 

experiments on applications such as rotary scanning 
3D reconstruction and rotation servo control based on 
inverse kinematics, to evaluate and improve the model 
and estimation method 
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