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Abstract ; A subject who wears a suitable robotic device will be able to walk in complex environments with the aid of environmen-
tal recognition schemes that provide reliable prior information of the human motion intent. Researchers have utilized 1D laser sig-
nals and 2D depth images to classify environments, but those approaches can face the problems of self-occlusion. In comparison,
3D point cloud is more appropriate for depicting the environments. This paper proposes a directional PointNet to directly classify
the 3D point cloud. First, an inertial measurement unit (IMU) is used to offset the orientation of point cloud. Then the directional
PointNet can accurately classify the daily commuted terrains, including level ground, climbing up stairways, and walking down
stairs. A classification accuracy of 98% has been achieved in tests. Moreover, the directional PointNet is more efficient than the
previously used PointNet because the T-net, which is utilized to estimate the transformation of the point cloud, is not used in the
present approach, and the length of the global feature is optimized. The experimental results demonstrate that the directional Point-

Net can classify the environments in robust and efficient manner.
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1 Introduction

Wearable robots, including lower limb exoskel-
etons and prostheses, can assist millions of paraple-
gics and amputees in regaining their walking abili-
ty[l-4

rhythmic locomotion, such as walking on the level

!, Humans can use wearable robots to perform

ground or a treadmill”®’. However, they still face
challenges when seeking non-rhythmic locomotion,
for example, when switching locomotion modes in a
complex environment'®'. Human signals have been
utilized to help wearable robots for switching the lo-
comotion modes, but this approach is not ro-
bust' ™",

An able-bodied human can walk in complex en-
vironments using a complete vision-locomotion loop.
Human eyes can observe terrains in advance and fa-
cilitate the brain to optimize the gait modes .
However, this vision-locomotion loop is broken for

paraplegics and amputees. Consequently, researchers

endeavor to add “eyes” to wearable robots and en-
hance the environmental adaptability of the wearable
robots. The depth camera, laser sensor, RGB camer-
a, and LIDAR have been utilized to recognize the

. : 13-17]
daily commuted environments' """’

, including level
ground, climbing up stairs, and walking down
stairs. Previous researchers have shown that an envi-
ronmental recognition system can provide reliable
prior information for a wearable robot to switch loco-
motion modes, with user-independent environmental

information''®

!. Nevertheless, there are still some
limitations in the previous research. Researchers have
introduced many hyperparameters to extract reliable
features from the original environmental information.
The environmental classification methods, like
threshold method, decision tree, and support vector
machine, depend on the experience of the research-
ers and may not be robust nor general in real envi-

ronments. Additionally, previous researchers only

Code and data: https://github.com/KuangenZhang/Directional —pointnet
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adopted 1D laser signal or 2D images to classify ter-
rains, which may face the problem of self-occlusion.
Consequently, it is required to design an end-to-end
environmental classification method based on 3D
point cloud.

The 3D point cloud that is provided by the
depth camera or LIDAR can depict daily environ-
ments well and can be applied to classify environ-
ments. However, there are some challenges to classi-
fy point cloud, including unordered and unstructured
peculiarities. Traditionally, researchers have inclined
to map the unstructured point cloud to some struc-
tured spaces. For instance, the point cloud can be
transformed to 3D voxel grids and classified by 3D
ShapeNets' "’ and VoxelNet'*”. However, the vox-
elization methods may suffer from the curse of di-
mensionality and limit the resolution of the point
cloud. For this reason, the voxelization methods are
not satisfactory in processing a point cloud of large
size. Researchers have attempted as well to project
the point cloud into several planes and utilize multi-
ple 2D convolutional neural networks ( CNNs ),
such as Multi-view CNN'?" | to recognize these 2D
images. Nevertheless, the projection from the 3D
point cloud to 2D images may lead to losing some
critical information and face challenges of handling
self-occlusion problems. Recently, PointNet, an
end-to-end deep neural network, has been intro-
duced to directly classify and segment the 3D point
cloud'®’. The PointNet ++ and frustum PointNets
have also been proposed to extract local features and
remove irrelevant regions by using corresponding
RGB images'*’* 1*'

The present paper utilizes the PointNet to classi-
fy the daily encountered environments (e.g., level
ground, up stairs, and down stairs), because the
global feature extracted by the PointNet is adequate
to classify environments. In addition, the PointNet is
more efficient than PointNet++ and frustum Point-
Net. However, the invariance under transformations
is inapplicable to the point cloud of environments.

For instance, the transformations may mingle up

stairs with down stairs. Under such circumstances,
we apply a sensor fusion method'®’ to combine an
inertial measurement unit (IMU) with a depth cam-
era to capture a stable point cloud and simplify the
PointNet to a directional PointNet.

The present paper hypothesizes that the direc-
tional PointNet can directly classify the stable 3D
point cloud of daily encountered environments (level
ground, up stairs, and down stairs). This will facili-
tate a wearable robot to achieve non-rhythmic loco-
motion in complex environments. The main contribu-
tions of the present paper include: 1) introducing a
directional PointNet to directly classify 3D point
cloud of daily environments, 2) comparing the per-
formance of this application between the directional
PointNet and the PointNet, and 3) collecting the 3D
point cloud dataset of daily encountered environ-
ments.

The rest of the paper is organized as follows.
Section 2 describes the theoretical and experimental
methods of the present work. Experimental results
are presented in section 3. Section 4 provides the as-
sociated discussions. The conclusions of the paper

are given in section 5.

2  Methods

The vision system and the overall process of en-
vironmental classification are shown in Fig.1. The
IMU and depth camera are fixed on the belt and can
provide a stable point cloud, after synchronization.
The original point cloud is dense and requires a large
computational cost. In fact, there are superfluous
points in the dense point cloud. Hence, first the
point cloud is downsampled. Then every point of the
downsampled point cloud can be connected to the di-
rectional PointNet to extract the features. The global
features are extracted through multi-layer perceptron

and are utilized to directly classify the point cloud.

2.1 Properties of Environmental Point Cloud
Similar to the point cloud used in the previous
research'*! | the present environmental point cloud is

also unordered. Hence the neural network should be
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invariant to the sequence variation of the input point
cloud. However, the type of environmental point
cloud depends on the specific orientation, which is
different from the invariance property of the point
cloud in the previous research'®*’* For instance, after

rotation, the point cloud of up stairs can be trans-

PointNet

Environmental
classification L7

Directional

formed to the point cloud of down stairs. Conse-
quently, the input point cloud should be stabilized
first to distinguish between the point clouds of up
stairs and down stairs. Moreover, the designed neu-
ral network should observe the rotation of the point

cloud.
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Fig. 1 The vision system and the overall process of environmental classification. The vision system is worn on the belt of the

subject and provides a stable point cloud. The point cloud is downsampled first and is classified through a directional PointNet.

2.2 Point Cloud Stabilization

In the previous research, a point cloud stabiliza-
tion method was presented''™ . Because the depth
camera is worn on the belt, it will shake when a hu-
man walks. Then, the point cloud provided by the
depth camera cannot be stable. In order to stabilize
the point cloud, an IMU is used to measure the rota-
tion angle of the camera, and the rotation matrix is
calculated from the ground-based coordinate system
to the camera-based coordinate system, in real time.
Then, the point cloud is transformed to the ground-

based coordinate system using the rotation matrix.

2.3 Directional PointNet Architecture
The point cloud in this paper is unordered but
direction-dependent. Thus a directional PointNet

(see Fig.2) is designed based on the architecture of

the PointNet *'-

Considering the unordered property of the point
cloud, only the symmetrical functions are selected :
multi-layer perceptron and max-pooling layer. The
multi-layer perceptron (MLP) connects with the in-
put points (nx3) and converts each point (1x3) in-
to a feature vector (1xXN). Besides, the MLP for
different points shares the parameters to ensure sym-
metry. The extracted feature matrix (nxN) is aggre-
gated to a global feature (1xN) through a max poo-
ling layer. The combination of the shared MLP and
the max pooling layer is a symmetric function.
Hence, the variation of the sequence of input points
will not influence the extracted global features. Fi-
nally, the global feature is utilized to calculate the

classification scores for k classes by another MLP.
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Previous researchers designed a T-net to esti-
mate the affine transformation matrix and offset the

2! However, this

transformation of the point cloud'
method is not appropriate for environmental classifi-
cation because the rotation of the point cloud could
affect the class of the point cloud, such as up stairs
and down stairs. Therefore, the T-net is expunged
and instead an IMU is utilized to stabilize the point

cloud.

9 Global

Input MLP(N/16,N/16,N/16,N/8,N)  Max poolin

————— ! A XN 2 feature
Sharing [ +nxN . A MLP
parameters | | % (N/2,N/4 k)
1 1
X 'y Results

Fig. 2 Directional PointNet architecture. The input point
cloud consists of r points, and each point has three coordi-
nates x, y and z. The multi-layer perceptron ( MLP) con-
verts each point to a 1xN feature vector. MLPs for differ-
ent points share parameters, to ensure symmetry. The
global feature is extracted through a max pooling layer

and is utilized to calculate the classification results for &

classes, by another MLP.

Fig. 3 Experimental environment.

2.4 Environmental Data Collection

The environmental dataset consists of simulated
point cloud (50% ) and the point cloud of the real
environment (50% ). The simulated point cloud was

generated based on the general characteristics of the

environments'®'. The point cloud of the real envi-
ronment was captured by a depth camera, which was
worn on the belt of a subject. As shown in Fig.3,
there are three types of environments: level ground,

up stairs, and down stairs.

3 Results

There are 4016 point cloud samples from three
(k=3) different categories (level ground, up stairs,
and down stairs) in the present dataset. The overall
dataset was split into a training set ( 50% ) and
testing set ( 50% ). Each point cloud sample is
composed of 2048 (n=2048) 3D points. During the
training process, the initial learning rate, momen-
tum, and batch size were set at 0.001, 0.9, and 32,
respectively. The learning rate decayed during
training, and the decay step and rate were 200000
and 0.7. Adam optimizer was selected as the optimi-

Zer.

3.1 Point Cloudof Different Environments

Three types of point clouds are shown in Fig.4,
and the differences between various types of point
cloud are discernible. Compared to the point cloud
generated through the simulation, the point cloud of
a real environment is noisier. Moreover, there are
some interferential points in the point cloud of a real

environment, including the side wall and human leg.

3.2 Results of Using Global Feature with Differ-

ent Lengths

The environmental classification algorithm
would be implemented on portable devices in real
time to control the motion of wearable robots. Hence
the computational cost should be decreased. In the
previous research*’ | the length of the global feature
has been set at 1024 to classify 40 types of models,
which may be time consuming for portable devices.
Fortunately, in the present study, only three types of
environments need to be classified. Therefore, the
feature-length is decreased to reduce the computa-

tional cost.
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In order to optimize the length of the global fea-
ture, the present directional PointNet is trained using
global features with different lengths. The corre-
sponding classification accuracies and loss values are
shown in Fig.5. Except for the length of 32, the
global feature with other lengths can achieve very
high accuracy (98% ) quickly, and the convergence
speed increases with the increase of the length of the
global feature. The length of the global feature is
chosen as 256 in the present work because the con-
vergence rates of the directional PointNet between u-
sing a global feature of length 256 and using a longer
global feature, are similar. Additionally, the compu-
tational cost will increase with the length of the glob-

al feature.

Up stairs Down stairs

Level ground

Simulation

Reality

Fig. 4 Point cloud of different environments. The point
clouds in the first row are generated through simulation,
and those in the second row are captured from real envi-

ronments.
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Fig. 5 Classification accuracy and loss values for the testing set using global features with

different lengths. N= length of global feature.

3.3 Environmental Classification Results

The performance of PointNet'**! is evaluated on
dataset, and compared with the performance between
the directional PointNet and the PointNet ( see Fig.
6). Compared to the PointNet, the classification ac-
curacy of the directional PointNet increases more
quickly. In addition, the classification loss values of
the directional PointNet decrease more quickly. The

difference between the directional PointNet and the

PointNet is that the T-net is removed in the former.
The results in Fig.6 show that T-net is not appropri-
ate for environmental classification in the present
work, and it will decrease the convergence speed
and increase computational cost.

The directional PointNet has been tested as well
on the real dataset set, which contains 1500 samples
for three types of real environments (500 samples

for each category). Still, a classification accuracy of
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98% has been achieved.
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Fig. 6 Classification accuracy and loss values

for the testing set.

3.4 Visualizing Critical and Upper Bound Points

The global feature is related to some points in a
point cloud, which are called critical points. Moreo-
ver, the global feature will remain the same even af-
ter including some noisy points. The points of the
largest point cloud that has the same global feature as
the critical points are called upper bound points.

Through calculating the corresponding points
for the global feature, The critical points can be ob-
tained. The upper bound points can be extracted
from a 1mx1mXx1m cube if the feature of the specific
point is not larger than the global feature.

The results of critical and upper bound points
are shown in Fig.7. The critical points are sparse
compared to original points and upper bound points,
but they can outline the important shape of different
types of point cloud well. The upper bound points
are dense and show the robustness of the presented

method when dealing with noise.

3.5 Computational Complexity Analysis

The training and testing of the directional Point-
Net were implemented on a computer with an Intel
Core i7-6700 (3.4 GHz), a 16 GB DDR3, and a
graphics card ( GeForce GTX 1050 Ti). On this
computer, the directional PointNet can classify the
point cloud (2048 points/sample) quickly (2 ms/
sample ) . The number of parameters and the floating-
point operations/sample ( FLOPs/sample) are com-

pared between the directional PointNet and the Point-

Net'*'. As given in Table.1, the number of parame-
ters and the computational cost (FLOPs/sample) of
the directional PointNet are much lower than those of
the PointNet because the T-net is removed in the di-
rectional PointNet, and the length of the global fea-

ture is decreased.
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Fig. 7 Critical and upper bound points for different types
of point cloud. LG, US, and DS represent level ground,

up stairs, and down stairs.

Table 1 The number of parameters and computational cost
(FLOPs/sample) for directional PointNet and Point Net.

Method # Parameters FLOPs/sample
Directional PointNet 0.05M 43M
PointNet 3.5M 440M

4 Discussion

This paper introduced a directional PointNet to
classify daily encontered terrains. For the directional
PointNet, the T-net was removed because the orien-
tation information is also important to classify differ-
ent terrains, such as up stairs and down stairs. More-
over, an IMU was combined with a depth camera to
capture a stable point cloud. Although the PointNet
can also achieve high classification accuracy and low

loss values, the computational cost of the PointNet is
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found to be higher than the directional PointNet. Ad-
ditionally, during training, the PointNet has con-
verged more slowly than the directional PointNet,
because the PointNet needed to extract other deeper
features than the orientation information to classify
up stairs and down stairs. Consequently, although
the T-net can increase classification accuracy and
promote the rotation invariance of the PointNet'*'
it is futile to classify the daily encountered terrains.

The efficiency of the presented directional
PointNet was increased by optimizing the length of
the global features. The experimental results show
that the classification accuracy and loss values are
improved infinitesimally after increasing the length
of the global feature to larger than 256. The length
of the global feature is relative to the number of the
category of the point cloud. Previous work '
has set the length of the global feature to 1024 to
classify 40 types of the point cloud, because the crit-
ical global features for different categories are differ-
ent, and the neural network needs to extract all fea-
tures simultaneously to classify all categories. Never-
theless, there are only three categories in the present
work, thus the feature-length of 256 is adequate to
classify these three types of daily encountered ter-
rains.

Furthermore, the critical and upper bound
points are analyzed in the present paper. Only a few
critical points can determine the category of a point
cloud. Moreover, the global feature will not be af-
fected after adding some noisy points. Comparing to
our previous method " | the directional PointNet
could be more robust because it can classify 3D point
cloud directly and can avoid self-occlusion problems.
Moreover, the directional PointNet can also extract
the principal components of the point cloud automat-
ically, which can be utilized to estimate the environ-
mental parameters.

The environmental classification accuracy is

high in the present work because the number of envi-

ronmental categories is relatively small. Although
these types of environments can also be classified by
using traditional methods, including threshold, least-
square, and support vector machine methods, the
presented directional PointNet is more satisfactory
because it avoids feature engineering. Besides, it can
be more conveniently applied to classify the point
cloud of more categories.

Although the directional PointNet can classify
the daily encountered terrains at high accuracy, there
are still some limitations. Firstly, the categories of
the point cloud should be expanded to include obsta-
cles, ramps, walls, and so on to enhance the envi-
ronmental adaptability of the wearable robots in more
complex environments. Besides, the environmental
point cloud should also be segmented to estimate
some parameters of the environment, which can be
beneficial in the path planning of a wearable robot.
Finally, the method of directional PointNet has only
been evaluated in the offline analysis. This method
should be applied to real-time control of a wearable

robot, to further assess this method.

5 Conclusion

This paper introduced a directional PointNet to
directly classify the 3D point cloud of daily encoun-
tered terrains. The performance of the presented di-
rectional PointNet was evaluated through the offline
classification experiments. The directional PointNet
was able to classify different daily terrains accurately
(98%) and efficiently. The directional PointNet
converged more quickly than the PointNet because it
utilized the orientation information of the point cloud
rather than relying on a T-net. The length of the
global features was also optimized. Finally, the criti-
cal and upper bound points were visualized to ex-

plain the outcome of the directional PointNet.
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