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Abstract ; Detection and recognition of a stairway as upstairs, downstairs and negative (e.g., ladder, level ground) are the funda-
mentals of assisting the visually impaired to travel independently in unfamiliar environments. Previous studies have focused on u-
sing massive amounts of RGB-D scene data to train traditional machine learning (ML) -based models to detect and recognize sta-
tionary stairway and escalator stairway separately. Nevertheless, none of them consider jointly training these two similar but dif-
ferent datasets to achieve better performance. This paper applies an adversarial learning algorithm on the indicated unsupervised
domain adaptation scenario to transfer knowledge learned from the labeled RGB-D escalator stairway dataset to the unlabeled
RGB-D stationary dataset. By utilizing the developed method, a feedforward convolutional neural network (CNN)-based feature
extractor with five convolution layers can achieve 100% classification accuracy on testing the labeled escalator stairway data distri-
butions and 80.6% classification accuracy on testing the unlabeled stationary data distributions. The success of the developed ap-
proach is demonstrated for classifying stairway on these two domains with a limited amount of data. To further demonstrate the ef-
fectiveness of the proposed method, the same CNN model is evaluated without domain adaptation and the results are compared
with those of the presented architecture.
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1 Introduction approaches can only provide user-selected informa-

ti instead of aut ly taki int t th
Approximately 285 million people around the 101 fnsfeadt O atfonomously taking nto account the

. . [8] _
world were visually impaired, of whom 39 million obstacles presented in motion . RGB-D cameras,
were blind, based on the 2010 World Health Organi-

zation survey ''. Although some mobility assistant

which can simultaneously capture both visual fea-
tures and depth information of the environment, are

systems, which are based on converting sonar infor- widely used to recognize indoor and outdoor envi-
[3-4]
mation into audible signals, have been developed to ronments - Many researchers have focused on

facilitate navigation, obstacle detection, and way-

finding tasks '*'

, the visually impaired still face
challenges to actively interact with dynamic sur-
rounding environments, such as stairways. Stairways
widely exist in both indoor and outdoor environ-
ments. Thus, the potential risk of falling from stairs,
especially downstairs, can be fatal to the visually
impaired.

To effectively detect stairways, monocular cam-
eras, stereo cameras, and laser scanning devices (e.

g., LIDAR) have been used. However, the existing

combining visual features with depth information for

91 He et al.'”! directly

robust image representation
combined RGB channels with the corresponding
depth information at the early stage to generate four-
channel RGB-D images (early fusion). By feeding
their RGB-D images in a feedforward CNN, they
obtained a higher validation accuracy compared with
that of feeding the original RGB images into the
same CNN architecture. This research implies that
depth channel has a better feature representation than

the R, G, B channels. However, their training and
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testing samples come from the same data distribu-
tion. Thus, if their model is utilized for testing an-
other dataset, its performance will degrade signifi-

) Munoz et al. "* and Wang et al. " con-

cantly [
structed the one-dimensional depth vector as parallel
lines, which contains the distance from a camera and
the orientation of each stair, to train a support vector
machine ( SVM ) classifier and classify upstairs,
downstairs, and level ground. They both used edge
detection to gain edge maps from RGB images and
extracted one-dimensional depth vectors with the dis-
tance and orientation information from edge maps by
applying Hough transform.

Nevertheless, the performance of edge detection
algorithms and Hough transform highly depends on
the level of chosen thresholds. In this manner, they
have carried out numerous preprocessing tasks to
make their datasets adapt to their model. Thus, their
model will poorly perform when it is tested on real-
case scenarios, whose data distribution can be signif-
icantly different from that of their dataset.

Domain adaptation ( DA) refers to a situation
where one aims at learning a discriminative classifier
from samples drawn from the source and applying
this classifier to a different but related target data dis-
tribution. DA methods can learn a mapping between
the source domain and the target domain when the
target samples are either fully unlabeled ( unsuper-
vised domain adaptation) or partially labeled ( semi-
supervised domain adaptation ). The present paper
proposes an adversarial learning method for a domain
adaptation scenario in the presence of a shift ( as
shown in Fig. 1) between two data distributions. The
task is formulated as an unsupervised domain adapta-
tion (UDA) problem, in which escalator stairway
visual features and depth features are labeled in the
source domain while having the unlabeled stationary
stairway visual features and depth features in the tar-
get domain.

To apply feed-forward networks to the stationa-
ry stairway (target) domain without being hindered

by the shift between the two domains, it is required

to embed domain adaptation into the process of
learning representation so that the classification deci-
sions are made based on features that are both dis-
criminative and invariant to the change of domains.
Inspired by domain adversarial neural networks
(DANN) "' a feature extractor, label classifier,
and domain classifier are embedded into a composed
deep feedforward network to classify the stairway
images across the two domains. Additionally, the
unsupervised domain adaptation is achieved by
adding a domain classifier connected to the feature
extractor via a gradient reversal layer. The gradient
reversal layer ensures that the feature extractor only
extracts domain-invariant features by multiplying the
gradient by negative one during the backpropagation.

The main contributions of the paper are as fol-
lows: 1) the possibility of using adversarial learning
methods to tackle unsupervised domain adaptation
scenario from the escalator to stationary stairway is
verified; 2) an adversarial learning method is em-
bedded into a deep feedforward convolutional neural
network for unsupervised domain adaptation.

The remainder of the paper is organized as fol-
lows; Section 2 discusses the proposed framework
and the experimental methods of the present work.
Section 3 presents the experimental results. Section 4
discusses the limitations of the work. Section 5 con-
cludes the paper and indicates the planned future

work.

2 Adversarial Learning for Unsupervised
Domain Adaptation

For classification tasks, the input space is X
and the set of L possible labels is Y. In the setting of
unsupervised domain adaptation, n labeled examples
are sampled from the escalator distribution P(X*,Y")
to form the source domain Ds = { (X;,Y}) |7 ,. Sim-
ilarly, m unlabeled examples are sampled from the
stationary data distribution Q(X',Y") , which is dif-
ferent but similar to the escalator data distribution, to

form the target domain Dt = { (X)) {1, .
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Fig. 1 Examples of the RGB image and the depth image of the downstairs stationary stairway dataset

are shown on the top-left and top-right corners, respectively. Examples of the RGB image and the depth image

of the downstairs escalator stairway dataset are shown on the down-left and

down-right corners, respectively. An obvious shift between the two data distributions can be observed.

The work of Ben-David et al. -'*' shows that the
target risk R, is upper bounded by three items; 1)
the source risk Rg; 2) the divergence of the hypoth-
esis space d,(S,T) ; 3) a constant complexity term
that depends on the VC-dimension d and the size of
the samples S and 7', which is denoted by m.

Theorem 1 ''*' Let H be a hypothesis space of
VC-dimension d. With a probability of at least 1-8
(over the choice of samples S~Dg and T~D, ), for

every h € H:

4 2 4
R, <R + d,(S,T) +J(dlogm+log +
m d 6

4
dlog(2m) + log ry

m

The theorem indicates that the learning algo-
rithm should minimize a trade-off between the source
risk and the divergence d,(S,T) to minimize the
empirical target risk. This paper aims to learn a fea-
ture extractor f = G,(x,6,) that extracts domain-in-
variant features, a label predictor y = G (f,6,) that
computes label predictions, and a domain classifier

G,(f,0,) that computes domain predictions and re-

duces the shift between two joint distributions. So,

1 m P
;zlel r(%»:V) ~Q

[G,(G/(x,)) #y,] can be minimized by jointly

the target risk R, =

minimizing the source risk and the distribution differ-

ence.

2.1 Domain Adversarial Neural Networks
Domain adversarial neural networks explicitly
implement Theorem 1 into a neural network classifier
that can extract transferable features to reduce the
distribution shift between the two domains. To ex-
tract as many transferable features as possible, a
deep feedforward convolutional neural network is de-
signed as the feature extractor G,(x,6,) , with pa-
rameters 6, , for extracting discriminative features of

) This paper uses cross-entropy loss with

images
softmax function to define the discrepancy between
predictions and the original input distributions. To
ensure that the extracted features are domain-invari-
ant, the parameter 6, is jointly learned by maximizing
the loss of domain predictor G,(f,6,) and minimi-
zing the loss of label predictor G (f,6,) . The label

prediction loss and the domain prediction loss,
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Fig. 2 Domain adversarial neural network includes a standard feed-forward architecture formed

by a deep feature extractor and a deep label predictor. The shift in two joint distributions is

reduced by adding a domain predictor connected to the feature extractor via a gradient reversal layer.

The gradient reversal layer multiplies the gradient by negative one during the backpropagation training,

which makes the feature distributions over the two domains similar.

respectively, are denoted by :
L,(6,.6,) = L,(G,(C/(x,.6) .6,) ,y.) (1)
Ly( f90d) =Ld(cd(cf(xi70f) ,0,) ,d)  (2)
Thus, the domain adaptation problem becomes
optimization of the objective function

1
R(f’ )’0):;2%'5 L(f, jV)

zxiE(DSUDT) L,(6;.0,) (3)

where n, and n, are the number of examples in

the source domain and target domain, respectively;
and the loss of the domain classifier is weight by A .

By optimizing the objective function (3), the pa-

rameters 6, 6 , 6, will deliver a saddle point (o,

0y7 Hd)
(6,,0,) = argmmR( ):,0,,0,) (4)
(0 ) = arg maxR( f,ﬂy,ﬁ ) . (5)
by the following gradlent updates ;
aL,
Q,—,u(THT) —’ey (7)
b () g 8
- _) —
A (g =0, (8)

where w is the learning rate.

2.2 CNN Architecture for Feature Extractor
To perform domain adversarial training, a deep
convolutional neural network is constructed for fea-

Ganin et al.l'"

ture extractor G,(x,0,) . experimen-
ted their domain adversarial neural network on
MNIST and MNIST-M datasets. The two data distri-
butions have much fewer features and less noise
compared with the real-world stairway datasets used
in the present paper. Thus, the present feature ex-
tractor should be deep enough, which is able to ex-

tract discriminative features of stairway datasets.

.‘“'

asoe

Fig. 3 The proposed deep convolutional neural network
architecture for the feature extractor. The input of the

feedforward architecture consists of 80 x 80 x 4 RGB-D
images. The output is a 1200-dimensional (5 x 5 x 48 )

vector which contains discriminative features.

The feature extractor G,(x,60,) incorporates five



INSTRUMENTATION, Vol 6. No 2, June 2019

25

convolution layers and one fully-connected layer,
which gives 1200-dimensional feature vector as an
output. The first convolution layer applies 32 7 x 7
filters (extracting 7 X 7-pixel sub-regions) with Re-
LU activation function and 2 X 2 max pooling. The
second convolution layer applies 32 3 X 3 filters with
ReLU activation function. The third convolution lay-
er applies 48 3 x 3 filters with ReLLU activation func-
tion and 2 X 2 max pooling. The fourth convolution
layer applies 48 3 x 3 filters with ReLLU activation
function. The fifth convolution layer applies 48 3 X 3
filters, with ReLU activation function, followed by
two 2 X 2 max-pooling layers. During each training
batch, the pairwise cosine similarities between 1200-
dimensional features are calculated and back-propa-
gated as the loss for all pairs within the batch.

A label predictor G, (f,0,) and a domain pre-
dictor G,(f,0,) are attached to the 1200-dimensional
bottleneck of the fully-connected layer of the feature
extractor in parallel (as shown in Fig. 2). The label
predictor consists of three fully connected layers
(1200 — 100 — 100 — 3). Similarly, the domain
predictor has two fully-connected layers (1200 —
100 — 2). 6, is learned by jointly training the label
predictor and the domain predictor. Thus, domain-
invariant features can be effectively extracted by the
present feature extractor after the training conver-

gence.

2.3 RBG-D Data Generation

As discussed above, depth information has a
better feature representation than R, G, B channels.
So, an early fusion is applied on the RGB and depth
channels to construct the four-channel input. To add
depth information, the original three-channel RGB
images are extended to four channels and the corre-
sponding depth information is copied to the fourth

channel.
3 Results

1,105 escalator RGB-D image pairs and 2,157
stationary RGB-D image pairs are selected from
RGB-D Stairway Detection Dataset, * which con-

sists of three classes ( downstairs, upstairs, and neg-
ative cases). To combine RGB images with its cor-
responding depth information, all RGB images are
resized to 72 X 72 X 4 and the corresponding depth
information is copied to their fourth channel. The es-
calator stairway dataset ( source domain) is split into
a training set (80% ) and a testing set (20% ). The
stationary stairway dataset (target domain) is split
into a training set (40% ) and a testing set (60% ).
Each data sample is a 72 X 72 x 4 matrix. The learn-
ing rate is adjusted during the stochastic gradient de-
Mo
(1+a-p)?

alternatively be adjusted by cosine decay pu =

scent by u = The learning rate could

2

number of batches '

1 l
(1 + cos ;T) M, at batch ¢, where T is the total

") During the training process,

the initial learning rate u, , momentum p, and the

batch size are set as 0.0005, 0.45, and 256, respec-

tively. To promote convergence and low error on the

source domain training, the following values are

used: « = 10 and 8 = 0.75. The domain adaptation

parameter A is initiated at 0. During the training
2

rocess, A is updated through A = —————-1.
P ’ P ue 1 +exp (-10p)

3.1 Different Stairways

Three types of the stairway are shown in Fig. 4.
The difference between various types of stairway can
be easily distinguished. By comparing the stairway
RGB image with its corresponding depth informa-
tion, it is argued that the depth information has bet-
ter feature representation and less noise than the
RGB information. Thus, more discriminative fea-
tures can be extracted from the depth channel rather
than from the R, G, B channels.

3.2 Results without Domain Adaptation

When relatively large amounts of training data
are available, CNN can learn more discriminative
features than any other existed methods do '"*'. To
show the advantage of using CNN to extract discrim-

inative features, the proposed CNN architecture is
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trained and tested on the escalator stairway dataset ('source domain).

Table 1 Experimental Results of the Escalator Stairway Recognition with the CNN architecture.

Prediction / Ground Truth Upstairs Downstairs Negative Accuracy
Upstairs 79 1 0 98.75%
Downstairs 0 79 1 98.75%
Negative 0 0 63 100.0%

Table 2 Experimental Results of the Stationary Stairway Recognition with the CNN

architecture only trained on the Escalator Dataset.

Prediction/ Ground Truth Upstairs Downstairs Negative Accuracy
Upstairs 244 130 95 52.03%
Downstairs 82 281 74 64.30%
Negative 77 63 248 63.92%

Oownstaics Upstaies Nagntive The results (as shown in Table. 1) indicate that

the proposed CNN can achieve an overall test accu-

racy of 99.28% on the source domain. After compa-

v, L™
'\
Depth
R L
) ﬂ - -

Fig. 4 Different stationary stairways. The first row shows

ring the performance of the proposed CNN with that

of the Munoz et al.” s model (92.7%), one can

conclude that it is advantageous to use a deep feed-
forward CNN to extract discriminative features for
the four-channel RGB-D images. The results ( over-

depth images; the second row shows the all 59.72% ) shown in Table. 2 indicate a significant

corresponding RGB images. degrading of performance when the model trained
only on the source is tested on the target.
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Fig. 5 The effect of domain adaptation on the distribution of extracted features. The left figure illustrates the feature
distributions before domain adaptation. The right figure illustrates the adapted feature distributions. Blue points
correspond to the escalator stairway data distributions (source domain). Red points correspond to the stationary

stairway data distributions (target domain). The number 0 represents the downstairs case; the number 1 represents

the upstairs case; the number 2 represents the negative case.
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3.3 Results with Domain Adaptation

The proposed system incorporates the DANN
regularizer with the proposed feed-forward CNN ar-
chitecture. To mitigate the shift between two data
distributions, the labeled escalator stairway data is
combined with the unlabeled stationary stairway data
to train the proposed system. The present model a-
chieves an average accuracy at 100% for the escala-
tor ( source domain) stairway recognition. This re-

sult indicates that the domain adaptation regularizer

can improve the performance of the classifier by a-
dapting the escalator scenario to the stationary sce-
nario.

After the training convergence, the present
model is tested on the stationary stairway dataset
(target domain). The results shown in Table 4 indi-
cate that the present model successfully mitigates the
effect of the data distribution shift with an average
test accuracy at 80.6% for the stationary stairway

recognition.

Table 3 Experimental Results of the Escalator Stairway Recognition with domain adaptation.

Prediction/ Ground Truth Upstairs Downstairs Negative Accuracy
Upstairs 30 0 100.0%
Downstairs 0 30 0 100.0%
Negative 63 100.0%

Table 4 Experimental Results of the Stationary Stairway Recognition with domain adaptation.

Prediction / Ground Truth Upstairs Downstairs Negative Accuracy
Upstairs 381 56 32 81.24%
Downstairs 47 339 51 77.57%
Negative 25 40 323 83.25%

3.4 Visualizations of Domain Adaptation

To visualize different feature distributions be-
tween the source and the target, t-SNE projection''*’
is applied on the last hidden layer of the label predic-
tor G (f,0,) . As shown in Fig. 5, the domain adap-
tation regularizer makes two different feature distri-
butions get closer. This implies that the feature ex-
tractor G,(x,6,) has been successfully confused by
jointly training the label predictor G, (f,6,) and the
domain predictor G,(f,6,) .

The overlap between the different distributions
in Fig. 5 indicates the success of domain adaptation.
Moreover, it is observed that the overlap also corre-
sponds to the classification accuracy for the target
domain, i.e., more overlap in t-SNE projection re-

sults in higher classification accuracy for the target.

3.5 Computational Environment
The training and testing of the present model

were implemented on a computer with an AMD

Ryzen 7 2700X Eight-Core Processor (3.7 GHz), a
16 GB DDR3, and an NVIDIA GeForce GTX 1060
graphics card. This computational environment al-
lows the model to be trained on 256-sized batches.
The labeled samples from the source constitutes half
of each batch. The rest of the batch constitutes the

unlabeled samples from the target.
4 Discussion

This paper incorporated domain adaptation
methods into stairway recognitions. To extract more
transferable features from two different data distribu-
tions, a deep feedforward convolutional neural net-
work was designed to learn more discriminative fea-
tures of the RGB-D stairway dataset. The results in-
dicated that, without using domain adaptation tech-
niques, the proposed CNN architecture could a-
chieve 99.28% test accuracy on source domain data

distributions ( the escalator stairway dataset). Fur-
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thermore, the present RGB-D stairway dataset has
much less labeled data compared with the Munoz et
al.’ s stairway dataset. However, the proposed CNN
architecture still outperforms their model.

This work also indicates that domain adaptation
methods will contribute to a better training conver-
gence. By jointly training the label predictor with da-
ta from two different distributions, the model will
outperform the proposed CNN architecture, and con-
verge with fewer training epochs.

Although the proposed CNN architecture with
domain adaptation regularizer can classify the stair-
way at high accuracy and mitigate the effect of data
distribution shift, it is acknowledged that there are
still some limitations. First, one should expand the
categories of the stairway, such as obstacle, ramp,
and wall, to enhance the environmental adaptability
of the proposed model in more complex environ-
ments. Besides, the present model adopted only two
different stairway data distributions. More stairway
data distributions should be considered in the future
work so that the model will be more robust. Finally,
the proposed method has only been evaluated in the

offline analysis.
5 Conclusion

This paper present a deep architecture deep ar-
chitecture for domain adversarial neural networks to
transfer the knowledge learned from the labeled esca-
lator stairway data distributions to the unlabeled sta-
tionary stairway data distributions. Unlike the previ-
ous stairway recognition methods, the accuracy of
the proposed model did not rely on a large amount of
labeled data. The results demonstrated that the devel-
oped model would achieve better performance with
much less labeled data compared with other methods.
The developed model successfully mitigated the deg-
radation of performance caused by the shift between
data distributions. Moreover, the present work indi-
cated that RGB-D images had better feature repre-

sentations than RGB images.
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