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Abstract : Sleep apnea (SA) is a common sleep disorder. Identifying patients at risk by means of comprehensive monitoring that
requires overnight stay at professional sleep clinics are costly and inconvenient and can lead to unreliable results in view of the un-
familiar sleep environment. Existing wearable devices for sleep monitoring, which can be used in a familiar home environment,
do not provide the same comprehensive monitoring as through clinical monitoring. The larger objective of the present work is to
develop a sleep monitoring system for home use, which can provide comprehensive monitoring. In the development in this paper,
machine learning (ML) models are explored for the classification of SA and sleep stages using multisensory data, without neglec-
ting any of the required signals. The data acquired through the sensors are normalized, their features are extracted using Composite
Multiscale Sample Entropy (CMSE) and are standardized using a robust scaling algorithm. Processed features are classified using
a Neural Network (NN) and the obtained results for the SA classification are compared with those obtained by using a Support
Vector Machine (SVM) approach. The impact of neglecting signals when classifying sleep stages is analyzed as well. The results
are presented in the paper and observations are made. The NN model trained with the Bayesian regularization algorithm has pro-
vided an overall average accuracy of 94.5% and performed slightly better than when trained using the scaled conjugate gradient
backpropagation algorithm (93.2% ). The SVMs have yielded lower accuracy levels compared to the NNs (<92% ). It is observed
that the use of all 14 signals for SS classification yields an overall test accuracy of 72.3% , which is higher than that when one or
few signals are used. It is concluded that ML models are effective in classifying sleep data from multiple sensors. Accuracy levels
are higher when fused multisensory data are used as inputs. Furthermore, NN models are found to be better suitable in practical
application and can be incorporated into an inexpensive and convenient wearable device that can carry out comprehensive monito-
ring.
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1 Introduction stroke. Therefore, sleep monitoring is an important

) ) procedure to identify the presence of any form of
Sleep Apnea (SA) is recognized as a common
sleep apnea.

form of sleep disorder, which is related to abnormal .. . . .
Clinically, four main categories are used to i-

breathing, since over 20% of the adult population dentify apneic events, namely: No apneic event
(NE), Central Sleep Apnea ( CSA), Obstructive
Sleep Apnea (OSA), andHypopnea (HYP) where

symptoms of both CSA and OSA persist ( Sdnchez-

suffers from this disorder ( Sweetman, et al., 2017)
(Magnusdottir & Hilmisson, 2018). Sleep, which

leads to a restricted state of awareness that is essen-

tial for a healthy life, can be seriously affected by
disorders such as sleep apnea. Sleep disorders may
result in daytime sleepiness, fatigue, and degraded
quality of life. Prolonged affliction may increase the

risks of cardiovascular and metabolic diseases and

de-la-Torre, et al., 2013) (Hawkins, 2015) (Java-
heri, 2010). Identification of the sleep stages of a
person is necessary to determine their quality of sleep
since this may be used as an indicator to identify

symptoms of sleep apnea and other underlying disea-
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ses. In order to identify the stages of sleep or the se-
verity of SA, the current gold standard is laboratory
polysomnography (PSG), which follows the stand-
ards of the American Academy of Sleep Medicine
(AASM) (Berry, et al., 2017). However, PSG
typically involves multiple visits to a sleep clinic and
overnight monitoring. Such monitoring in an unfa-
miliar environment to the patient may not generate
accurate data, which may lead to misdiagnosis, and
also is not economically favourable. Portable devices
are available such as ( Sharkey, et al., 2014 )
(Chen, et al., 2013) (Leth, et al., 2017) (Hao, et
al., 2013) for sleep monitoring in a household envi-
ronment, as discussed in ( Premasiri & Clarence W.
de Silva, 2018). However, they cannot provide
comprehensive monitoring and do not comply with
the standards of the AASM. Therefore, it is recog-
nized that there is a need for an inexpensive wearable
device that can provide comprehensive monitoring at
the accuracy levels of laboratory PSG.

The focus of the present paper is to develop an
improved versionof ( Premasiri & Clarence W. de

Silva, 2018) , which is an automated and enhanced

types of signals used in laboratory PSG, and a model
for the classification of sleep stages. This technology
will be incorporated in to the wearable device,
which is being developed by our group. In the pres-
ent work, priority is given to achieving a high accu-
racy level as that of laboratory PSG and complying
with the standards of the AASM.

The present paper uses neural networks ( NNs)
for data classification with supervised learning and
compares the resulting accuracy levels when different
learning algorithms are used in the model. An NN
will allow the system to function through learning the
classifications as done by experts. The most suitable
NN model is compared with another commonly used
classification technique, support vector machines
(SVMs), in order to assess their ability to achieve
the accuracy levels of laboratory PSG. These tech-
niques are presented next.

2 Methodology

This section presents the steps followed in the
diagnosis of apneic events and the classification of

sleep stages. An overview of the process is shown in

) ) ) Figure 1.
sleep scoring system to classify apneic events for all
‘ Input 1 ‘ ‘ Input 2 I ’ Input 3 ‘ ..... ‘ Input n ‘
‘ Normalization ‘ ‘ Normalization ‘ ‘ Normalization ‘ ,,,,, ‘ Normalization ‘
v v v v
‘ Feature Extraction ‘ ‘ Feature Extraction ‘ ‘ Feature Extraction ‘ ,,,,, ‘ Feature Extraction |
v v v v
‘ Fusion ‘
Classification/Diagnosis
- T
Apneic Events Sleep Stages
1. No Apneic Event 3. Obstructive SA 1. Wake 3. SI 5. SII
2. Central SA 4. Hypopnea 2. REM 4 SII 6. SIV

Fig. 1 Classification of the fused data from all signals.

As shown, input data that have been externally
filtered, are normalized to reduce or eliminate any
redundant data. Features are extracted from the fil-

tered signals for subsequent use because too much

information can undermine the effectiveness of clas-
sification. Specifically, meaningful information is
extracted, which retain the key information. Fusion

will allow the incorporation of information from mul-
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tiple sensors to produce more consistent and accurate
information. In the present application, feature level
fusion is performed prior to classification. In the
present work, two classification systems are used :

(1) Apneic event classification

(2) Classification of sleep stages

Each stage is discussed in detail in the subsec-
tions that follow.

According to the scoring techniques of the
AASM[ 6], scoring is performed manually by ex-
perts for 30 second intervals of an overnight data re-
cord of a patient. To be consistent, in the automated
system of the present work, the pre-processing and
diagnosis are performed for the same time interval.

The data samples used in this work are the over-
night polysomnography recordings provided to the
Physionet database of the Massachusetts Institute of
Technology (MIT) (St. Vincent’s University Hospi-
tal/University College Dublin, 2011) , USA, by St.
Vincent’ s University Hospital/University College,
Dublin and Massachusetts General Hospital * s
(MGH ) Computational Clinical Neurophysiology
Laboratory (CCNL) ( Massachusetts General Hospi-
tal’s (MGH) , 2018) and the Clinical Data Anima-
tion Laboratory ( CDAC). This database contains
more patient data than in the previous database. The
database is labeled only for sleep stages and arousal
regions, which is not suitable for classifying sleep
apneic events. Normalization, feature extraction and
standardization are essential pre-processing tech-
niques as presented in ( Premasiri & Clarence W. de
Silva, 2018). These methodologies are presented

now.

2.1 Normalization

The original time series containing raw data are
completely disparate, and their ranges vary. There-
fore, prior to feature extraction, they are brought to
a common basis. This normalization of the ( exter-
nally) filtered data, reduces, and in some cases e-
liminates, the data redundancy. This is performed
with respect to the mean and the standard deviation

of a signal for the data points from 1 to ¢z (here ¢ is

the number of data points in the time series) , as,

Signal (t) )

SignalNurmulized (t ) =
where w is the mean of the original time series,
signal (at time 7) and o is the standard deviation of

the signal.

2.2 Feature extraction

Feature extraction allows the mining of useful
information without impairing key information of a
signal, as needed in a classification model. Sleep
disorder monitoring involves information derived
from several sensors over time. Hence, multivariate
time series have to be taken into account in the
process of information fusion. Although the signals
comprise repetitive patterns, there may exist unex-
pected events depending on the subject who is being
monitored and their medical conditions ; specifically,
the signals are time- and person-variant. Also, pres-
enting a system with original signals (time series) as
the inputs for processing or classification is undesira-
ble since excess information will reduce the effec-
tiveness of the data. It follows that feature extraction
is necessary. Inspired by the work in ( Wu, et al.,
2013) and (Begum, et al., 2014) , it was consid-
ered that composite multiscale sample entropy
(CMSE) is a suitable approach for feature extrac-
tion, specifically for classifying apneic events in the
present biomedical application. CMSE ( Premasiri &
Clarence W. de Silva, 2018) ( Wu, et al., 2013)
involves coarse graining of the acquired signals ac-
cording to,

1 JS
cs, :E:% E (2)

where C is the coarse-grained time series
(CGTS) with scale factor S, E is the original time
series element, and the indices ( positions) of the o-
riginal and CGTS are denoted by i and j , with 1 <j <
n/S where n is the total number of elements in the o-
riginal time series.

In the present work it is empirically established
that S varies from 1 to 10 ( Premasiri & Clarence W.
de Silva, 2018). This process is followed by calcu-
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lating the sample entropy value for each coarse-

grained time series using

3 Am + 1(r)
MSampEn(CS) = _ln(Am(r) j (3)

Here, C° is the CGTS with respect to S, r is the
threshold, and A” and A™*' are the number of repeti-
tive sequences for templates with m and m+1 ele-

ments, respectively.

2.3 Scaling the extracted features

The step of scaling is desirable particularly in
the presence of outliers. This is because the distribu-
tions are brought to the same scale and are also made
to overlap such that outliers will not be present with-
in the range of the bulk of the new distributions in
the input data ( Sarkar, et al., 2018) ( Hackeling,
2017). The features of the same standard are fused
into one information set, as suitable to be presented
into a neural network.

This process is performed using the robust scal-
ing algorithm

Input, = Feature;- Q,(Feature) (4)
Q,(Feature) - Q,(Feature)

This scales each coarse-grained signal feature-

wise, given that Q,, Q,and Q,are the 25", 50" and

75" quantiles respectively and Feature, and Input, are

the elements of the feature vector and the input vec-
tor to be fed into the neural network (NN) ( Sarkar,
et al., 2018) (Hackeling, 2017) (Liu, 2017).

2.4 Detection of Sleep Apnea events

The features extracted from each of the signals
are fused and input to a neural network (NN) to di-
agnose the presence of apneic events and another
NN, to identify sleep stages.

The process is performed for intervals of 30 sec-
onds. The NN model used in this work and the train-
ing (TrD), validation ( ValD) and test ( TstD) data
are split as presented in ( Premasiri & Clarence W. de
Silva, 2018) . Supervised learning algorithms are
used in this application since the data available in the
database (Berry, et al., 2017)are scored.

In this work, Bayesian Regularization ( BR),

which uses a linear combination of squared errors
and weights to modify the relationship in such a way
that the system reaches a considerably high generali-
zation ability once the training process is complete,
is used as the learning algorithm. The algorithm is
based on the original work of MacKay is used as the
learning algorithm ( MacKay, 1992) (Beale, et al.,
2010). The results are compared with that obtained
from ( Premasiri & Clarence W. de Silva, 2018),
where scaled conjugate gradient backpropagation
(BR) (Mgller, 1993) (Beale, et al., 2010) is
used as the learning algorithm and the cross entropy

loss as the loss function.

2.5 SVMs for Apnea Event Classification

SVMs are commonly used for classification ap-
plications( Noble, 2006) in biomedicine such as the
work presented in (Hsu, et al., 2016) ( Spilka, et
al., 2017) (Varon, et al., 2015) for detection of
SA. In this backdrop, the classification of apneic e-
vents is done using an SVM to compare the results
obtained from the finalized NN, implemented for the
same task. The features provided to the SVM are the
same set of classes is not linearly separable. Hence,
Medium Gaussian SVM with the Gaussian kernel is
chosen as the classification learner. In order to deter-
mine the optimal hyperplanes for separation of the
data patterns, results using both one-against-one
(OVO) and one-against-all (OVA) approaches are

compared to identify the more suitable approach.

2.6 Classification of Sleep Stages
For classification of sleep stages, a model simi-
lar to the one used for apnea event classification is
used. Also, the BR algorithm is used based on the
results from the previous task. The recordings in 30s
intervals are classified in to 6 categories, namely;
Wake (W) Stage II (SIT)
Rapid Eye Movement (REM)  Stage III ( SIIT)
Stage T (SI) Stage IV (SIV)
( Technically, there are “Indeterminate” and “ Arti-
fact” classes according to the annotations given in

the database. However, these stages are not present
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in the available scored data. Thus, these two classes
are excluded in the process of classification of sleep
stages as performed in the present study).

According to (Berry, et al., 2017) , scoring of
sleep stages is predominantly based on EEG record-
ings and occasionally on EOG recordings. There-
fore, since it is possible that the classification of
sleep stages can be done based only on the features
extracted from EEG signals, classification of sleep
stages based on features extracted from the following
signals are compared ;

1 All fourteen signals used in laboratory PSG

2 Both EEG and EOG recordings

3 Only EEG recordings

4 Only EOG Recordings

Finally, the most suitable set of combined fea-

tures for classification of sleep stages is identified.

3 Results

In this section, the results for each of the three
modelsdiscussed in the preceding section are presen-
ted and discussed. In each case, the results are dem-
onstrated in a confusion matrix and a table. In each
confusion matrix, the lowermost row ( gray) pres-
ents the prediction accuracy levels; i.e., the true
positive and the false negative values. This represents
the percentages of accurate classifications for each

target class. The diagonal of the confusion matrices

(dark blue) shows the percentage that a class is ac-
curately classified. The rightmost column ( gray )
shows the accurate classification per class. The re-
maining cells ( light blue and light purple), repre-
sent the inaccurate classification of output classes for
each target class. The bottom right column ( white)
in each case represents the overall prediction

accuracy.

3.1 Detection of Sleep Apnea events

The comparison of results when trained using
BR learning algorithm in this work is compared with
the results demonstrated in ( Premasiri & Clarence
W. de Silva, 2018) in order to identify the most
suitable learning algorithm for the application of
sleep apnea event detection. The results and compari-
sons are presented in Table 1 and the confusion ma-

trices in Figure 2.

93.9%
0/
3.6% | 0.0% 6.1% NE

96.1%
0

01% | 3 gug [CSA

95.2%

4.8%

99.0%

0, 0,
0.4% | 0.0% 1.0%

75.4%

100%
0.0%

0.2% [RNEZS 0.0% 0.0%

99%
1.0%

0.0% OSA | 0.0% | 0.1% 0.0%

93.9%
6.1%

94.2% 100% |95.3%
5.8% 0.0% | 4.7%
NE CSA OSA HYP NE CSA OSA HYP
Target Class Target Class
(A) (B)

Output Class

0.1% | 0.0% HYP | 0.0% | 0.0%

99.1%| 86.9%
0.5% | 13.1%

Confusion Matrices for trained data using:
(A) BP and (B) BR algorithms

Fig. 2

Table 1 AASM standard compliance: PSG vs. existing wearable sleep monitoring devices

Apneic Event Category

Overall Prediction Accuracy

Event NE CSA OSA HYP

BP BR BP BR BP BR BP BR BP BR
TrD 99.1% 100%  86.9% 95.3% 65.9% 96.2%  96.9% 100% 94.2% 99.0%
ValD 98.5% - 90.0% - 66.7% - 100% - 93.9% -
TstD 98.5% 954% 66.7% 70.0% 76.5% 71.4%  100% 100% 92.2% 90.0%

For each category of SA, it can be seen that ac-
curacy levels of classification for TrD is higher when
using BR algorithm.

For TstD, the prediction accuracy when using
BR is higher for cases of CSA and HYP, and lower

for NE and OSA compared to when the BP algorithm
is used. The overall average accuracy for TstD is on-
ly slightly different when results from the two algo-
rithms are compared. BR algorithm does not require

the use of a validation data set. Therefore, the table
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will not indicate the percentage values for ValD for
the BR algorithm. The overall average accuracy of
the final NN is 94.5%. Thus, the final system will
be implemented with the NN trained using the
Bayesian regularization algorithm.

For each category of SA, it can be seen that ac-
curacy levels of classification forTrD is higher when

using BR algorithm.

SVMs for Apnea Event Classification

The input features are fed in to the model and
Medium Gaussian SVM with the Gaussian kernel
classification learner is used for classification. The
OVO and OVA approaches used for classification of
data are compared as shown in Table 2 and confu-

sion matrices in Figure 3.

Table 2 SVM results for apneic event classification using fused data

Apneic Event Category

Overall Prediction Accuracy

Event NE CSA OSA HYP
BP BR BP BR BP BR BP BR BP BR
TrD 93.6%  93.1% 100% 100% 100% 98.6% 100% 88.1% 94.4% 93.9%
TstD 74.8%  95.4% 0.0% 70.0% 0.0% 71.4% 0.0% 100% 74.8% 90.0%
100% 99.3% model, it could be concluded that using a NN for
0.0% | 0.0% 0.0% NE REXIA 0.1% | 0.4% 0.7%
o = classification of apneic events is suitable.
0.0% | 0.0% | 230" |CSA| 1.9% 0.0% | 0.1% 13::"//:
g BN = 3.2 Detection of Sleep Stages
o 0.0% 0.0% | 5500, [OSA| 3.5% | 0.0% 0.0% | 370, . . .
g it s As mentioned in the Methodology section, two
0, 0, )0, 974% 0, 9, .
&S [T so% VP [ databases are used in the present work, for the de-
e e b ol Rl B s o Bl o2 iy tection of the sleep stages. Results obtained from
NE CSA OSA HYP NE CSA OSA HYP

Target Class Target Class
&) (B)

Fig. 3 Confusion matrices for SVM trained data;
(A) OVO (B) OVA approach

It was observed that the SVM using OVO ap-
proach yielded slightly lower prediction accuracy
levels compared to the SVM that OVA approach for
training.

However, when the system was tested on the
test data, the OVO approach did not seem to have
the ability to classify all the classes efficiently; i.e.,
the SVM that used the OVO approach did not have
the ability to classify three of the four classes at all.
Thus, the approach for the SVM was chosen as
OVA, since it demonstrated a prediction accuracy
level of 90% once tested on the training dataset. The
overall average accuracy of the finalized SVM is 91.
2%. This is also consistent with the conclusion de-
rived from the work done by Milgram et al. ( Mil-
gram, et al., 2006). When comparing the overall

average classification accuracies with that of the NN

each data set are presented separately in Tables 3 and
4. The data presented in Table 3 and Table 4 repre-
sents databases with 25 and 1000 patients, respec-
tively.

As shown in Tables 3 and 4, the test data accu-
racies have been computed for all signals, notably,
EEG signal, EOG signals, and both EOG and EEG
signals. According to the results presented in the ta-
bles, it is observed that the highest overall prediction
accuracy of 72.3% were obtained for all signals
when compared to the cases of individual signals,
EEG and EOG ( with accuracies 64.9 and 53.7, re-
spectively ) . The combination of EEG and EOG sig-
nals has resulted in a prediction accuracy of 66.3%.
Based on these results, it is clear that in order to a-
chieve a satisfactory performance only the EEG and
EOG channels should be used at the final stage of
designing a device, which requires optimization of
selecting the number of channels.

However, an accuracy rate of 72.3 % cannot be
considered as a substantial level of accuracy when

compared with other existing models, as shown in
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Table 3 Comparison of classification of sleep stages for different feature types

Apneic Event Category

Overall Prediction Accuracy

Event

Oovo OVA OovoO OVA OovVO OVA TrD TstD

All 98.7% 99.3% 99.4% 99.5% 96.8% 96.4% 98.9% 72.3%
EEG 98.6% 94.6% 93.1% 97.9% 80.6% 95.6% 96.1% 64.9%
EOG 96.1% 95.6% 93.9% 97.2% 85.7% 93.7% 95.5% 53.7%
EEG & EOG 98.0% 99.0% 96.2% 99.2% 96.8% 99.4% 98.3% 66.3%

Table 4 Comparison of accuracy levels of apneic event classification systems

Classification System

Present work

Premasiri et al (Premasiri & Clarence W. de
Varon et al. (Varon, et al., 2015)

Song et al.(Song, et al., 2016)

Lin et al.(Lin, et al., 2017)

Silva, 2018)

Overall Average Accuracy | Complies with AASM standards?
> 94 % Yes
> 93 % Yes
> 85 % No
> 85 % No
> 70% No

Table S Comparison of accuracy levels of apneic event classification systems

Proposed by

Classification Model

Present work NN
Alickovic et al. ( Alickovic & Subasi, 2018) SVM
Gouveris et al. (Gouveris, et al., 2017) SVM

Signals/Channels Used Overall Avg. Accuracy
14 signals > 85 %
1 EEG channel > 84 %
2 EEG channels ~ 85 %

Table 5. Hence, it is important to use a further en-
hanced model in order to achieve higher accuracy
levels ( specifically, higher than 72.3% ). Therefore,
it is imperative that further improvements are re-
quired to enhance the accuracy of sleep stage classi-
fication. Section 3.3 elaborates on the further investi-

gation that is being carried out in this context.

3.3 Feature Analysis

Composite Multiscale Sample Entropy ( CMSE)
has been used as the feature extraction technique in
the present sleep classification system. In view of its
apparent shortcomings, it is necessary to further in-
vestigate the features extracted from all the patients
for sleep stage classification. As shown in Figure 4,
scatter plots are used to visualize and analyze the ex-
tracted features.

Since multiple features are obtained during the
feature extraction, visualizing each feature using a
single plot is difficult. Therefore, feature pairs are
plotted in each scatter plot and it is attempted to de-

tect which feature pairs are more suitable for clustering

SV

P
i

@ Non-Rem 1
@ Non-Rem 2
@ Non-Rem 3
Rem
Wake

Fig. 4 Feature Scatter Plot.

different sleep stages. This method is used in the
field of machine learning to visualize suitable fea-
tures for use with a neural network. Results high-
lighted in red are presented in Figure 5. Each axis re-
presents a feature and the sleep stages are denoted by
five different colors.

On observing the distribution of the sleep sta-
ges, it is clear that they are heavily overlapped, and
this has caused difficulty in clustering or categorizing
the sleep stages using a basic neural network with a

single hidden layer. Feature selection is very important
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Feature 1
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Feature 1

s 12 14 2 2 06 08 1 12
Feature 4 Feature 5

Fig. 5 Feature Scatter Plot ( Extracted).

in a classification application. Poor feature selection
will lead to poor performance. Therefore, further in-
vestigation is needed on the selection of features and
enhanced methods will help better feature selection.
With an improved feature selection procedure, better

accuracies can be obtained from the classifier.
4 Conclusion

In this work, three main tasks have been pres-
ented; implementation of a NN for classification of
apneic events, comparing the results of the finalized
NN with an optimized SVM for the same task, and
classification of sleep stages using a NN. Filtered
raw monitored signals were normalized, features
were extracted using the CMSE algorithm, and the
extracted features were standardized prior to being
used as inputs to the NN or SVM. For the classifica-
tion of apneic events using NNs, appropriate analy-
sis and comparison have been made for different
learning algorithms ( specifically, scaled conjugate
gradient back propagation and Bayesian regulariza-
tion ). The results and comparison show that the neu-
ral network has a higher prediction accuracy when
trained using the Bayesian regularization algorithm
rather than when the scaled conjugate gradient back-
propagation algorithm is used as the learning algo-
rithm. Hence, the final NN comprises a single hid-
den layer, while Bayesian regularization is used as
the learning algorithm

A Gaussian kernel is used for the SVM for clas-
sification of apneic events. It was shown that, the o-

verall average accuracy was higher when the one

versus all approach was used, compared to when the
one versus one approach was used. This conclusion
that is based on results seems to be consistent with
other studies that involve similar comparisons such as
(Milgram, et al., 2006). However, the finalized
NN, using the BR algorithm yielded a higher overall
accuracy compared to the SVM. Hence, it was de-
cided that the NN model was more suitable for the
task.

Based on the results obtained for the NN de-
signed for classification of sleep stages, it is ob-
served that the accuracy levels are the highest, i.e.,
72.3% , when all features are used. However, when
features extracted from EEG and EOG signals to-
gether are used, the resulting overall average accura-
cy is only 6% less than the highest accuracy. Hence,
given that a situation arises where all channels are
not used in the final device that will be implemen-
ted, the latter is also an option.

The models used for classification of apneic e-
vents and sleep stages are compared with existing
models or proposed systems as shown in Table 4 and
Table 5 respectively. It can be observed from this
comparison that the models presented in this work
have higher accuracies predicting apneic events while
complying with the standards of AASM. On the oth-
er hand, sleep stage classification system has less ac-
curacy levels compaired to the exsisting models. This
highlights the importance of further investigation on
new features and methods, to improve the current
system for classifying sleep stages.

The limitations of this work are mostly based on
the limitations of the available data. This is because
the database contains scored sleep data of only pa-
tients who suffer from sleep apnea as the patient
would have visited the sleep clinic for overnight re-
cordings only in the presence of symptoms of sleep
apnea. Therefore, recordings from healthy subjects
who do not suffer from sleep apnea are not readily a-
vailable. Also, the occurrence of certain apneic e-
vents is uncommon within the database. In such ca-

ses, when the data is split into training, validation
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and test data, the features corresponding to the un-
common classes may not be adequately available
within the datasets. This can be overcome by inclu-
ding recordings of more patients.

Future Work

Future research based on this work may be fo-
cused on investigating new features and methods to
improve the sleep stage classification system. The
use of an improved model associated with a health
quality index, would provide more meaningful inter-
pretation of the severity of sleep apnea and the quali-
ty of sleep. The present work used the open access
database, available in ( St. Vincent “s University
2011 ) and
(Massachusetts General Hospital’s (MGH) , 2018).

Therefore, the developed models must be optimized

Hospital/University College Dublin,

as suited for the signals obtained from the sensors
that are being developed for a wearable sleep moni-
toring device. Thereafter, the accuracy and com-
pleteness of the data needs to be estimated and the
confidence level of the final decision needs to be in-
terpreted. These tasks maybe achieved by comparing
and determining the percentage errors between the
outputs by the implemented system with scoring

done by several experts of sleep scoring.
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