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Abstract ; The Wireless Sensor Networks ( WSNs) are widely utilized in various industrial and environmental monitoring applica-
tions. The process of data gathering within the WSN is significant in terms of reporting the environmental data. However, it might
occur that certain sensor node malfunctions due to the energy draining out or unexpected damage. Therefore, the collected data
may become inaccurate or incomplete. Focusing on the spatiotemporal correlation among sensor nodes, this paper proposes a no-
vel algorithm to predict the value of the missing or inaccurate data and predict the future data in replacement of certain nonfunc-
tional sensor nodes. The Long-Short-Term-Memory Recurrent Neural Network (LSTM RNN) helps to more accurately derive the
time-series data corresponding to the sets of past collected data, making the prediction results more reliable. It is observed from

the simulation results that the proposed algorithm provides an outstanding data gathering efficiency while ensuring the data

accuracy.
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1 Introduction

A reliable WSN for industrial process or envi-
ronmental monitoring typically consists of a number
of sensor nodes that are reasonably deployed in the
region of interests (ROI)'" | seeking efficient data
collection to report the latest changes within the en-
vironment. In this regard, a timely and accurate
measuring process is of great significance since the
deployer of the WSN needs to know the latest chan-
ges in the ROI in the application. However, con-
strained by limited energy and the characteristics of
the WSN, some sensor nodes may deplete faster than
others and consequently, the collected data might be
inaccurate and even incomplete. Particularly, in sen-
sor nodes that are deployed in remote or hazardous
areas, it might be infeasible and human-labor consu-
ming to interact. In such situations, a backup plan
could be to use the neighboring sensor nodes to pre-
dict the missing data for the dysfunctional sensor
nodes, relying on the spatiotemporal correlations a-

mong them.

The temporal correlation determines the connec-
tion among a set of time-series data, which may in-
dicate that the value of certain data at some point is
somewhat a continuity of the previous values. This is
typically demonstrated when a set of seasonal data is
being observed in environmental monitoring applica-
tions. For instance, the temperature in a water body
may display a seasonal trend, where for any given
point in the time domain, the corresponding value of
the data could be approximated based on its adjacent
time-series data. Some research that focuses on the
temporal correlation has been carried out for time se-
ries prediction. The Least Mean Square (LMS) filter
and the Auto Regressive Integrated Moving Average
(ARIMA ) model, for instance, are such convenient
tools that require relatively minor computational
memory and have the advantage of effectively captu-
ring the characteristics of the data set in the time do-
main. Thanks to the emergence of those mathemati-
cal models, much energy could be saved by using
time-series prediction without real sensing in some
practical monitoring applications where a WSN is u-

tilized'*'. Likewise, reduced communication among
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different sensor nodes could be realized through the
time-series prediction in pursuit of energy conserva-
tion*). Regardless, a suitable mathematical model
with proper parameters would be energy-efficient for
time-series prediction using temporal correlation.
The spatial correlationis the geographical rela-
tionship and connections among the sensor nodes
with respect to their locations. This may mean that
the measurement from certain sensor node could be
predicted by its surrounding sensor nodes. In such
context, if a sensor node fails to collect and provide
a reliable measurement, the nearby sensor nodes,
depending on their spatial correlation, could collabo-
ratively predict a measurement with adequate confi-
dence. This will also pave the path for energy con-
servation within a typical WSN for environmental
monitoring applications. For example, the design of
routing protocols in WSNs is a major research topic,
which has drawn much attention. It is widely be-
lieved that an unbalanced deployment of sensor
nodes in the ROI may cause some sensor nodes to
deplete faster than others. In addition, a sensor node
closer to the sink might take a heavier burden for
node-to-node communication because most of the
data packets might be sent to the sink via such a sen-
sor node, which means a more frequent node-to-
node communication and greater energy consump-
tion. Fortunately, with the existence of spatial corre-
lation, it is possible to turn off a “dying” sensor
node and have its surrounding sensor nodes predict
the future measurements. In this manner, it is even
possible to further probe into some duty-cycling

') since some redundant sensor nodes could

schemes
be selectively shut down and their corresponding sen-
sor readings could be predicted by the neighbour sen-
sor nodes.

Previously , Liu et al."* proposed to capture the
temporal correlation by partitioning the time-series
data into a piecewise segments and assume that the
missing measurements have a linear relationship with
the adjacent data. In addition, the spatial correlation

is determined by clustering sensor nodes, which are

a small group of sensor nodes geographically close to
each other, forming a cluster. Within each cluster,
the measurements of some sensor nodes could be
collaboratively predicted by their surrounding sensor
nodes using the spatial correlation. The number of
sensor nodes within each cluster and the partitioned
segments is also dynamically determined by how fast
and dramatically the measured parameters are
changed within the environment. Yoon et al."” | pro-
posed a scheme in a similar fashion, which first di-
vides the WSN into a number of clusters, and then
leverages the spatial correlation within each cluster to
drastically reduce the number of in-network transmis-
sions. However, in terms of the characteristics of the
measured parameter, a different pre-defined thresh-
old and a fine-tuning process have to be implemen-
ted to guarantee the performance of the algorithm.
Pattem et al.'®’ discovered that, by taking advantage
of the spatial correlation among the sensor nodes, it
is possible to realize a near-optimal routing scheme
and data compression, which both contribute to han-
dling the energy-efficiency challenges in practical
WSN applications. Other than trying to decrease the
number of transmissions and clustering the scattered
sensor nodes, there are also schemes that aim to con-
duct compressive sensing within the sensor nodes by

“ In a

exploiting the spatiotemporal correlations'
nutshell, it is nontrivial to note that the spatiotempo-
ral correlation is a key notion that should be studied
to tackle the energy-efficiency issues in practical mo-
nitoring applications within a WSN.

Besides those lightweight mathematical models
mentioned beforehand, the LSTM RNN is another
efficient and promising tool that provides solid pre-
diction results on time-series data. Different from the
traditional time-series sequence predictors such as the
ARIMA, LMS and Kalman filter, the LSTM RNN
is much more favored today since it is not only able
to carry characteristics of the time-series data
throughout the time domain, but also capable of cap-
turing both linear and nonlinear relationships in any

given data segments, for future prediction.
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1] have seen suc-

Some recentwork such as
cess in implementing LSTM RNN for time-series
prediction. In '”) | the LSTM RNN has been adopted
for forecasting the environmental data, where the da-
ta of air pollutants are predicted at high accuracy.
Likewise, """ have proposed to train an LSTM RNN
model in order to predict the airline demand, which
also displays time-series characteristics within the
time domain.

Taking advantage of the effectiveness of the
spatiotemporal correlations and the efficiency of the
LSTM RNN, the present paper seeks to solve a
practical issue in environmental monitoring. That is,
when a specific sensor node is unable to conduct the
sensing task in a normal manner, due to the energy
constraint, the spatiotemporal correlation should be
determined according to the neighboring sensor
nodes. Moreover, in order to ensure the future meas-
urements are sufficiently accurate, the LSTM RNN
will be chosen for time-series data prediction.

The present paper is organized as follows: Sec-
tion 2 presents the formulated problem along with the
developed methodology. Section 3 demonstrates the
simulation and the corresponding results. What fol-

lows are the Conclusion and Discussion, in Section 4.
2 ProblemFormulation and Methodology

2.1 TIllustration for practical WSN applications
and assumptions
The environmental monitoring applications that

0213 For in-

utilize WSN are present everywhere
stance, in a large aquatic field, where a number of
sensor nodes might need to be deployed in order to
cover the whole area as much as possible. As can be
seen in Figure 1, in ideal conditions, the sensor
nodes are required to constantly collect the water-re-
lated data such as the dissolved oxygen, tempera-
ture, conductivity, and oxidation-reduction poten-
tial. from the aquatic body. Meanwhile, as men-
tioned before, some sensor nodes closer to the sink
might be ore active in transmitting data packets from

node to node, thus consume more energy than other

nodes that are farther to the sink. This unbalanced
condition of energy consumption would result in the
malfunction of the very sensor node. As illustrated in
Figure 1, under a normal routing scheme, the sensor
node denoted as N, is believed to consume more en-
ergy due to more frequent communication with its
neighbor nodes. As a consequence, there exists a
higher possibility that the sensor node N, may pro-
vide inaccurate measurement or malfunction. Anoth-
er case would be an unexpected natural disaster or
attack from the wildlife could cause the sensor nodes
to malfunction. Hence, a backup plan to have other
sensor nodes ready to work for the malfunctioned

sensor nodes is always highly desirable.

Fig. 1 An example of deploying the sensor nodes

in a pool for aquatic monitoring.

Before further looking into the proposed
scheme, a few assumptions have to be made to allow
the formulated problem and the developed methodol-
ogy more straightforward.

First, it is assumed that all the sensor nodes can
reach at least another sensor node in its neighbor.
That means, each sensor node has a sufficiently
large communication range to cover at least one sen-
sor node within its own range.

Second, the sensor nodes are not mobile,

which means that they retain their initial position
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once deployed. Considering the fact that the sensor
nodes may be deployed on a water surface in aquatic
monitoring applications, it is possible that some of
the sensor nodes will slightly drift. However, there
are many other environmental monitoring applica-
tions where the sensor nodes remain static''’.
Hence, for simplicity and scalability, it is assumed
that all the sensor nodes in the WSN are non-mobile.

Last,each sensor node knows its own location
as well as the others’ via such techniques as Global

15]

Positioning Systems (GPS)'

2.2 Measurement estimation using spatial corre-
lation

The selection of the surrounding sensor nodes is
crucial. As there are many sensor nodes that simulta-
neously work in the field, there could be several
sensor nodes surrounding a sensor node that is dys-
functional or running out of energy. For a sensor
node that needs prediction using its surrounding sen-
sor nodes, to properly select the candidate nodes, it
is necessary to know their relative distance. Consider
the case displayed in the Figure 2. If the sensor node
N, starts to malfunction, it would not make much
sense to use the data from N, and N, in the upper
right since the distance is too far and the collected
data samples in at the upper right and bottom left
might vary drastically. Also, if the sensor node den-
sity is too high in a certain area, using all the sur-
rounding sensor nodes that are quite close would also
be a waste of energy. For instance, the prediction re-
sults of using node N, and N, together might lead to
a similar prediction result as when only N, is used,
since they are geographically close to each other.
Hence, more preferably, the data collected from N, ,
1

xi(t> =

n
AVG

where x; is the estimated value for N, at time ¢
and x; is the sensor reading of N, at time 7. There-
fore, at any given time, the approximated measure-

ment for any node could be estimated depending on

1 I-—
- z dm,;\y

+ 1

N, and N, might provide slight diversity, which
could collaboratively reflect the overall condition of
the monitored area. Thus it is more appropriate to
have those nodes to be the potential candidate nodes.

In order to determine the proper candidate sen-
sor nodes, a selection scheme has been developed as
follows, where the candidate sensor nodes should

meet the requirement as;

_ dm,wy . . .
N, ,=|{N,l a<—— < B, j=1,-N, j# i/

AVG
(1)
Here N, ; stands for the candidate sensor nodes
chosen by sensor node N;, a and B are the lower
bound and upper bound that decide the range that N,
will choose the sensor nodes from, d,, ,; represents
the distance between N, and N;, while d,; is the av-
erage distance between N, and every other sensor
node within the field.

W&
&

Ng

Fig. 2 An example for choosing suitable

candidate sensor nodes.

In this regard, at any given point in the time
domain, the estimated measurement at that moment
forN, may be expressed as:

-x(t) |, VN eN,; (2)

its spatial correlation with its surround sensor nodes.

2.3 Time-series prediction using LSTM RNN
As for the time-series prediction, the LSTM

RNN is essentially an extension of the traditional Re-
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current Neural Network (RNN). An obvious advan-
tage of the RNN over the traditional Neural Network
(NN) is that, the time-series features among the da-
ta sequence can be carried throughout the time do-
main. This is owning to the fact that the outputs of
each training iteration will be jointly fed as an input
for next-round iteration. Nevertheless, one formida-
ble challenge is that a gradient exploding or vanis-
hing problem might occur and as a result, the im-
pacts of past inputs on future predicted measurements
might be gradually undermined. To overcome this
problem, the LSTM RNN has been developed with a
special component, which is called a memory cell. A
memory cell consists of three components, which are
input gate, output gate and forget gate. Compared to
the traditional NN and RNN, it is the forget gate that
makes the LSTM RNN superior because it can selec-
tively choose how much information should be kept
and carried out over any arbitrary time. Thus, the
gradient exploding or vanishing problems could be a-
voided

Network
(RNN) , compared to the traditional NNs, is capa-

However, the Recurrent Neural
ble of capturing the dependencies of long-range time-
series sequences. That means, while processing the
time-series sequences, the trained model acquires the
correlation within the sequence, and the prediction is
thereby influenced and determined by a long range of
past inputs. Due to this superiority, RNNs have been
widely utilized in various applications such as speech
recognition, prescription systems, image processing,
and natural language processing. Unfortunately, con-
strained by the inner structure of an RNN, the issue
of gradient vanishing/exploding emerges, which ne-
cessitated the enhanced version LSTM RNN. A de-
tailed description of LSTM is found in ',

Figure 3 shows the structure of the LSTM cell.

As demonstrated in the figure, the LSTM RNN
utilizes the memory cell to selectively store the infor-
mation and carry them forward to the neurons. Re-
spectively denote the forget gate, input gate, output
gate, and cell state as f,, i,, o, and C,. Then the

schemes for updating the prediction model and carry-

ing the information forward are expressed as:

fi=o (W Lh_x] +b) (3)

i, =0(W,«[h_ ,x,] +b) (4)

o,=a(W, +[h_,,x] +b,) (5)

C, =tanh(W, « [h_ ,x,] +b,) (6)

C =fiCoy *ix C (7)

h, = o, * tanh(C),) (8)

where h,_, stands for the output vector in the last
iteration, o denotes the sigmoid function, | w,,
W, ,W,, W, | e R"™" represent the weight matrix
and { b, ,b,,b,,b, | € R represent the bias ma-

trix. In addition, (6) derives a new candidate value

E: , deciding to what degree the information has to
be retained and later on, added to a new state in
(7). In the meantime, (5) and (8) determine the

output vector h, at the current time step.

Fig. 3 Structure of the LSTM cell.

To summarize the proposed scheme, when the
remaining energy of a sensor node is too low, a bea-
con signal should be sent to its surrounding sensor
nodes for notification. Subsequently, the chosen sen-
sor nodes start to conduct the time-series prediction
based on its own past measurements. With each can-
didate nodes’ prediction, the spatial correlation is
then combined with weights according to equation
(2). Finally, the estimated measurement at any giv-

en time for the node is computed.
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3 Simulation study

3.1 Simulation setup

To evaluate the performance and validate the ef-
ficiency of the proposed scheme, the sensory data
from Intel Berkley lab has been selected''”’. As can
be seen from Figure 4, there are 56 sensor nodes in
total, which recorded light,

and voltage data from Feb 28th to April 5th in 2004.

REEEC N

temperature, humidity

MUF“““

e e

Fig. 4 54 Sensor nodes deployed in Intel

Berkley research lab.

1 .
MSE = —Y, (x, - )" (9)
n =

n

MAEziZ

n =y

(10)

The node 12 has been randomly chosen and the
measured temperature data from Feb 28 until March
3 are used for simulation, which consist of 3000
samples in total. The lower bound and upper bound
are set as 0.1 and 0.3, respectively. In that sense,
the sensor nodes N,, and N, fall in the N,,’ s range
and serve as the candidate nodes for collaboratively
predicting measurements using their spatial correla-
tion. It is assumed that N,, starts to malfunction after
collecting 3000 samples, then the remaining 1000
samples are predicted relying on N,, and N,,. After
many rounds of trial and error, it is found that the
optimal number of neurons in the first layer should
be set as 40 while it should be 20 for the number of
neurons in the second layer. To feed the LSTM
RNN,

training epoch is 50 rounds.

the batch size is chosen to be 50 and the

3.2 Simulation results

Figure 5 and Figure 6 present the original data
collected by N, and the prediction results after using
LSTM RNN and spatial correlations on N,, and N,,.
It is believed that the accuracy of the predicted data
is guaranteed while N,, stops collecting data from the

environment.
28

26 .
24

22

20

e ———— .

True and estimated output

0 500 1000 1500 2000 2500 3000
Samples

Fig. 5 Original temperature data collected by N,,

28

- Original Data
*  Estimated Data
e ]

True and estimated output

0 500 1000 1500 2000 2500 3000
Samples

Fig. 6 Prediction results for N,, starting
from the 2001" data.

To illustrate the accuracy of the developed
scheme, the Mean Square Error (MSE) and Mean
Absolute Error (MAE) are used to evaluate the pre-
diction results. The MSE and MAE are defined as

follows .
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Here x, represents the ground-truth value in the
test data set and x, stands for the predicted value. Ta-
ble 1 indicates the corresponding performance after
choosing different value for the upper bound.

Table 1 Prediction accuracy for different

value of upper bound.

Upper bound 0.3 0.4 0.5 0.6 0.7
MSE 0.021  0.037 0.054  0.067 0.093
MAE 0.0342  0.0599 0.0689 0.0718  0.0864

4 Discussion and conclusion

From the presented simulation results, it is seen
that when a larger upper bound is chosen, more sen-
sor nodes will be involved for data prediction. How-
ever, the accuracy will be slightly undermined be-
cause of the diversity among the collected data. De-
spite that, the overall MSE and MAE are still nu-
merically small, which shows the effectiveness and
efficiency when a sensor node malfunctions or pro-
vides inaccurate measurements. Moreover, determi-
nation of the upper bound depends on the specific
monitored area and the number of available sensor
nodes deployed in the ROI. A trial-and-error process
may be taken before choosing a suitable value for the
upper bound.

This paper offered a solution when some sensor
nodes were unable to provide reliable sensor read-
ings. Focusing on the spatiotemporal correlation and
the handy time-series prediction tool LSTM RNN, a
scheme for selecting proper candidate nodes as well
as collaboratively predicting future measurements
were developed. It is believed that, when the whole
WSN suffers from a heavy overload, there is a high
chance that more sensor nodes need turning off or
might go dysfunctional; hence, keeping only a few
and most representative sensor nodes “alive” and
having them simultaneously predict for other sensor

nodes would be an energy-efficient strategy.
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